Research Article
BibTex RIS Cite

Sıvılaşma nedeniyle meydana gelen oturmaların PM4Sand bünye modeli ile incelenmesi

Year 2022, Volume: 28 Issue: 3, 378 - 388, 30.06.2022

Abstract

Depremlerin yıkıcı etkisini ve yapısal hasarları arttıran en önemli faktörlerden biri, dinamik yükler altında zemin tabakalarında oluşan deformasyonlardır. Özellikle suya doygun kumlu zeminlerde, kuvvetli yer hareketi sırasında boşluk suyu basıncındaki ani artış nedeniyle meydana gelen sıvılaşmalar, zemin tabakalarında büyük deformasyonlara yol açmakta ve mühendislik yapılarında ciddi hasarlara neden olmaktadır. Bu çalışma kapsamında, rölatif sıkılığı %35, 55, 75 olan üç farklı kum zemin özellikleri kullanılarak iki boyutlu zemin profilleri oluşturulmuş ve on dört farklı kuvvetli yer hareketi kullanılarak doğrusal olmayan dinamik analizler bir sonlu eleman yazılımıyla gerçekleştirilmiştir. Kum zemin tabakalarının sıvılaşma davranışını modellemek için ise programda yer alan PM4Sand bünye denklemleri kullanılmıştır. Elde edilen numerik analiz sonuçları literatürde yer alan ve iyi bilinen yarı-ampirik yöntemlerle karşılaştırılmıştır. Buna ek olarak, kuvvetli yer hareketini tanımlamak için kullanılan parametrelerle, numerik ve yarı-ampirik analizler sonucunda elde edilen sıvılaşma kaynaklı oturmalar arasındaki ilişkiler incelenmiştir.

References

  • [1] Chien LK, Oh YN, Chang CH. “Evaluation of liquefaction resistance and liquefaction induced settlement for reclaimed soil”. In Twelfth World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January-4 February 2000.
  • [2] Kim S, Park K. “Proposal of liquefaction potential assessment procedure using real earthquake loading”. KSCE Journal of Civil Engineering, 12, 15-24, 2008.
  • [3] Eseller-Bayat EE, Gulen DB. “Undrained dynamic response of partially saturated sands tested in a DSS-C device”. Journal of Geotechnical and Geoenvironmental Engineering, 2020. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002361
  • [4] Kumar SS, Dey A, Krishna AM. “Liquefaction potential assessment of Brahmaputra sand nased on regular and irregular excitations using stress-controlled cyclic triaxial test”. KSCE Journal of Civil Engineering, 24, 1070-1082, 2020.
  • [5] Adamidis O, Madabhushi GSP.“Experimental investigation of earthquake-induced liquefaction in loose and dense sand layers”. SECED Young Engineers Conference, Newcastle, United Kingdom, 4 July 2013.
  • [6] Ecemis N. “Simulation of seismic liquefaction: 1-g model testing system and shaking table tests”. European Journal of Environmental and Civil Engineering, 21(4), 679-699, 2013.
  • [7] Ramirez J, Barrero AR, Chen L, Dashti S, Ghofrani A, Taiebat M, Arduino, P. “Site response in a layered liquefiable deposit: evaluation of different numerical tools and methodologies with centrifuge experimental results”. Journal of Geotechnical and Geoenvironmental Engineering, 144(10), 1-22, 2018.
  • [8] Seed RB, Riemer MF, Dickenson SE. “Liquefaction of soils in the 1989 Loma Prieta Earthquake”. Second International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Missouri, USA, 11-15 March 1991.
  • [9] Adalier K. Mitigation of Earthquake Induced Liquefaction Hazards. PhD Thesis, Rensselaer Polytechnic Institute, New York, USA, 1996.
  • [10] Boulanger RW, Mejia LH, Idriss IM. “Liquefaction at moss landing during Loma Prieta earthquake.” Journal of Geotechnical and Geoenvironmental Engineering, 123(5), 453-467, 1997.
  • [11] Cubrinovski M, Bray JD, Taylor M, Giorgini S, Bradley B, Wotherspoon L, Zupan J. “Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake”. Seismological Research Letters, 82(6), 893-904, 2011.
  • [12] Cubrinovski M, Bradley B, Wotherspoon L, Green R, Bray J, Wood C, Pender M, Allen J, Bradshaw A, Rix G, Taylor M, Robinson K, Henderson D, Giorgini S, Ma K, Winkley A, Zupan J, O’Rourke T, DePascale G, Wells D. “Geotechnical aspects of the 22 February 2011 Christchurch earthquake”. Bulletin of the New Zealand Society for Earthquake Engineering, 44(4), 205-226, 2011.
  • [13] Bray J, Cubrinovski M, Zupan J, Taylor M. “Liquefaction effects on buildings in the central business district of Christchurch”. Earthquake Spectra, 30(1), 85-109, 2014.
  • [14] Wu, J. Liquefaction Triggering and Post Liquefaction Deformations Montery 0/30 Sand Under Uni-Directional Cyclic Simple Shear Loading. PhD Thesis, University of California, California, USA, 2002.
  • [15] Tokimatsu K, Seed HB. “Simplified Procedures of the Evaluation of Settlements in Clean Sands”. Earthquake Engineering Research Center, University of California, California, USA, Scientific Report, UCB/GT-84/16, 1984
  • [16] Ishihara K, Yoshimine M. “Evaluation of settlements in sand deposits following liquefaction during earthquakes”. Soils and Foundations, 32(1), 173-188, 1992.
  • [17] Shamoto Y, Zhang JM, Tokimatsu K. “New charts for predicting large residual post-liquefaction ground deformation”. Soil Dynamics and Earthquake Engineering 17(7-8), 427-438, 1998.
  • [18] Cetin KO, Bilge HT, Wu J, Kammerer AM, Seed RB. “Probablistic model for the assessment of cyclically induced reconsolidation (volumetric) settlements”. Journal of Geotechnical and Geoenvironmental Engineering, 135(3), 387- 398, 2009.
  • [19] Bray JD, and Dashti S. “Liquefaction-induced building movements”. Bulletin of Earthquake Engineering, 12(3), 1129-1156, 2014.
  • [20] Tokimatsu K, Hino K, Suzuki H, Ohno K, Tamura S, Suzuki Y. “Liquefaction-induced settlement and tilting of buildings with shallow foundations based on field and laboratory observation”. Soil Dynamics and Earthquake Engineering, 124, 268-279, 2019.
  • [21] Tziolas A. Evaluation of the PM4Sand Constitutive Model for the Prediction of Earthquake-Induced & Static Liquefaction in Hydraulic Fills. MSc Thesis, Delft University of Technology, The Netherlands, 2019.
  • [22] Liyanapathirana DS, Poulos HG. “A numerical model for dynamic soil liquefaction analysis”. Soil Dynamics and Earthquake Engineering, 22(9-12) 1007-1015, 2002.
  • [23] Byrne PM, Park SS, Beaty P, Sharp M, Gonzalez L, Abdoun T. “Numerical modeling of liquefaction and comparison with centrifuge tests”. Canadian Geotechnical Journal, 41(2), 193-211, 2004.
  • [24] Chen C, Zhang J. “Constitutive modeling of loose sands under various stress paths”. International Journal of Geomechanics, 13(1), 1-8, 2013.
  • [25] Boulanger RW, Ziotopoulou K. “PM4Sand (version 3.1 Revised Jully 2018), A Sand Plasticity Model for Earthquake Engineering Applications”. Department of Civil and Environmental Engineering, University of California, Davis, USA, Scientific Report, UCD/CGM-17/01, 2017.
  • [26] Pacific Earthquake Engineering Research Center. “Pacific Earthquake Engineering Research Center Ground Motion Database”. https://ngawest2.berkeley.edu/site (24.04.2021).
  • [27] Afet ve Acil Durum Başkanlığı. “Türkiye Bina Deprem Yönetmeliği”. Ankara, Türkiye, 30364, 2018.
  • [28] Plaxis BV. “Plaxis 2D Manual”. https://communities.bentley.com/products/geotechanalysis/w/plaxis-soilvision-wiki/46137/manuals-plaxis (05.02.2021).
  • [29] Kuhlemeyer RL, Lysmer J. “Finite Element Method Accuracy for Wave Propagation Problems”. Journal of Soil Mechanics and Foundation Devision 99(5), 421-427, 1973.
  • [30] Dafalias YF, Manzari M. “Simple plasticity sand model accounting for fabric change effects”. Journal of Engineering Mechanics, 130(6), 622-634, 2004.
  • [31] Toloza BP. Liquefaction Modelling using the PM4Sand Soil Constitutive Model in PLAXIS 2D. MSc Thesis, Delft University of Technology, The Netherlands, 2018.
  • [32] Boulanger RW, Munter SK, Krage CP, DeJong JT. “Liquefaction evaluation of interbedded soil deposit: Çark Canal in 1999 M7. 5 Kocaeli earthquake”. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), 1-20, 2019.
  • [33] Quevedo VHP. Seismic liquefaction analysis of a critical facility with PM4Sand in Plaxis. MSc Thesis, Delft University of Technology, The Netherlands, 2019.
  • [34] Bolton MD. "The strength and dilatancy of sands". Géotechnique, 3(36), 65-78, 1986.
  • [35] Bastidas AMP. Ottawa F-65 Sand Characterization. PhD Thesis, University of California, Davis, USA, 2016.
  • [36] Brinkgreve RBJ, Engin E, Engin HK. Validation of Empirical Formulas to Derive Model Parameters For Sands. Editors: Benz T, Nordal S. Numerical Methods in Geotechnical Engineering, 137-142, Rotterdam, The Netherlands: CRC Press, Balkema, 2010.
  • [37] Plaxis BV. “Plaxis The PM4Sand Model 2018”. https://communities.bentley.com/products/geotechanalysis/w/plaxis-soilvision-wiki/46105/udsmpm4sand (03.02.2021).
  • [38] Biot MA. “General solutions of the equations of elasticity and consolidation for porous material”. Journal of Applied Mechanics, 23(1), 91-96, 1956.
  • [39] Idriss IM, Boulanger RW. Soil Liquefaction During Earthquakes. 1st ed. Oakland, USA, Earthquake Engineering Research Institute, 2008.
  • [40] Hashash YMA, Musgrove MI, Harmon JA, Ilhan O, Xing G, Numanoglu O, Groholski DR, Phillips CA, Park D. “DEEPSOIL 7.0, User Manual”. http://deepsoil.cee.illinois.edu/Files/DEEPSOIL_User_Ma nual_v7.pdf (02.05.2021).
  • [41] Rocscience Incorporation. “Settle3D Liquefaction Theory Manual”. https://static.rocscience.cloud/assets/verification-andtheory/Settle3/Settle3D-Liquefaction-TheoryManual.pdf (8.05.2021).
  • [42] IBM Corporation. “IBM SPSS Statistics for Windows, Version 26.0”. https://www.ibm.com/support/pages/downloadingibm-spss-statistics-26 (24.05.2021).

Investigation of liquefaction induced settlements with PM4Sand constitutive model

Year 2022, Volume: 28 Issue: 3, 378 - 388, 30.06.2022

Abstract

One of the most important factors that increase the destructive effects of earthquakes and structural damages is the soil deformations during strong ground motion. The liquefaction occurs especially in saturated sandy soils as a result of the sudden increase in pore water pressure during the earthquakes and leads to large deformations in the soil layer and serious damages to engineering structures. In this study, by using three different sand properties with relative densities of 35, 55 and 75%, two-dimensional soil profiles were created and dynamic analyzes were carried out using fourteen different acceleration-time histories records. In the numerical analysis was performed with a finite element software and PM4Sand constitutive equations were used to model the liquefaction behavior of sand layers. The numerical analysis results were compared with the well-known semi-empirical methods in the literature. In addition, the relationships between the parameters used to define strong ground motion and the liquefaction-induced settlements obtained from numerical and semi-empirical analyzes were investigated.

References

  • [1] Chien LK, Oh YN, Chang CH. “Evaluation of liquefaction resistance and liquefaction induced settlement for reclaimed soil”. In Twelfth World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January-4 February 2000.
  • [2] Kim S, Park K. “Proposal of liquefaction potential assessment procedure using real earthquake loading”. KSCE Journal of Civil Engineering, 12, 15-24, 2008.
  • [3] Eseller-Bayat EE, Gulen DB. “Undrained dynamic response of partially saturated sands tested in a DSS-C device”. Journal of Geotechnical and Geoenvironmental Engineering, 2020. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002361
  • [4] Kumar SS, Dey A, Krishna AM. “Liquefaction potential assessment of Brahmaputra sand nased on regular and irregular excitations using stress-controlled cyclic triaxial test”. KSCE Journal of Civil Engineering, 24, 1070-1082, 2020.
  • [5] Adamidis O, Madabhushi GSP.“Experimental investigation of earthquake-induced liquefaction in loose and dense sand layers”. SECED Young Engineers Conference, Newcastle, United Kingdom, 4 July 2013.
  • [6] Ecemis N. “Simulation of seismic liquefaction: 1-g model testing system and shaking table tests”. European Journal of Environmental and Civil Engineering, 21(4), 679-699, 2013.
  • [7] Ramirez J, Barrero AR, Chen L, Dashti S, Ghofrani A, Taiebat M, Arduino, P. “Site response in a layered liquefiable deposit: evaluation of different numerical tools and methodologies with centrifuge experimental results”. Journal of Geotechnical and Geoenvironmental Engineering, 144(10), 1-22, 2018.
  • [8] Seed RB, Riemer MF, Dickenson SE. “Liquefaction of soils in the 1989 Loma Prieta Earthquake”. Second International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Missouri, USA, 11-15 March 1991.
  • [9] Adalier K. Mitigation of Earthquake Induced Liquefaction Hazards. PhD Thesis, Rensselaer Polytechnic Institute, New York, USA, 1996.
  • [10] Boulanger RW, Mejia LH, Idriss IM. “Liquefaction at moss landing during Loma Prieta earthquake.” Journal of Geotechnical and Geoenvironmental Engineering, 123(5), 453-467, 1997.
  • [11] Cubrinovski M, Bray JD, Taylor M, Giorgini S, Bradley B, Wotherspoon L, Zupan J. “Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake”. Seismological Research Letters, 82(6), 893-904, 2011.
  • [12] Cubrinovski M, Bradley B, Wotherspoon L, Green R, Bray J, Wood C, Pender M, Allen J, Bradshaw A, Rix G, Taylor M, Robinson K, Henderson D, Giorgini S, Ma K, Winkley A, Zupan J, O’Rourke T, DePascale G, Wells D. “Geotechnical aspects of the 22 February 2011 Christchurch earthquake”. Bulletin of the New Zealand Society for Earthquake Engineering, 44(4), 205-226, 2011.
  • [13] Bray J, Cubrinovski M, Zupan J, Taylor M. “Liquefaction effects on buildings in the central business district of Christchurch”. Earthquake Spectra, 30(1), 85-109, 2014.
  • [14] Wu, J. Liquefaction Triggering and Post Liquefaction Deformations Montery 0/30 Sand Under Uni-Directional Cyclic Simple Shear Loading. PhD Thesis, University of California, California, USA, 2002.
  • [15] Tokimatsu K, Seed HB. “Simplified Procedures of the Evaluation of Settlements in Clean Sands”. Earthquake Engineering Research Center, University of California, California, USA, Scientific Report, UCB/GT-84/16, 1984
  • [16] Ishihara K, Yoshimine M. “Evaluation of settlements in sand deposits following liquefaction during earthquakes”. Soils and Foundations, 32(1), 173-188, 1992.
  • [17] Shamoto Y, Zhang JM, Tokimatsu K. “New charts for predicting large residual post-liquefaction ground deformation”. Soil Dynamics and Earthquake Engineering 17(7-8), 427-438, 1998.
  • [18] Cetin KO, Bilge HT, Wu J, Kammerer AM, Seed RB. “Probablistic model for the assessment of cyclically induced reconsolidation (volumetric) settlements”. Journal of Geotechnical and Geoenvironmental Engineering, 135(3), 387- 398, 2009.
  • [19] Bray JD, and Dashti S. “Liquefaction-induced building movements”. Bulletin of Earthquake Engineering, 12(3), 1129-1156, 2014.
  • [20] Tokimatsu K, Hino K, Suzuki H, Ohno K, Tamura S, Suzuki Y. “Liquefaction-induced settlement and tilting of buildings with shallow foundations based on field and laboratory observation”. Soil Dynamics and Earthquake Engineering, 124, 268-279, 2019.
  • [21] Tziolas A. Evaluation of the PM4Sand Constitutive Model for the Prediction of Earthquake-Induced & Static Liquefaction in Hydraulic Fills. MSc Thesis, Delft University of Technology, The Netherlands, 2019.
  • [22] Liyanapathirana DS, Poulos HG. “A numerical model for dynamic soil liquefaction analysis”. Soil Dynamics and Earthquake Engineering, 22(9-12) 1007-1015, 2002.
  • [23] Byrne PM, Park SS, Beaty P, Sharp M, Gonzalez L, Abdoun T. “Numerical modeling of liquefaction and comparison with centrifuge tests”. Canadian Geotechnical Journal, 41(2), 193-211, 2004.
  • [24] Chen C, Zhang J. “Constitutive modeling of loose sands under various stress paths”. International Journal of Geomechanics, 13(1), 1-8, 2013.
  • [25] Boulanger RW, Ziotopoulou K. “PM4Sand (version 3.1 Revised Jully 2018), A Sand Plasticity Model for Earthquake Engineering Applications”. Department of Civil and Environmental Engineering, University of California, Davis, USA, Scientific Report, UCD/CGM-17/01, 2017.
  • [26] Pacific Earthquake Engineering Research Center. “Pacific Earthquake Engineering Research Center Ground Motion Database”. https://ngawest2.berkeley.edu/site (24.04.2021).
  • [27] Afet ve Acil Durum Başkanlığı. “Türkiye Bina Deprem Yönetmeliği”. Ankara, Türkiye, 30364, 2018.
  • [28] Plaxis BV. “Plaxis 2D Manual”. https://communities.bentley.com/products/geotechanalysis/w/plaxis-soilvision-wiki/46137/manuals-plaxis (05.02.2021).
  • [29] Kuhlemeyer RL, Lysmer J. “Finite Element Method Accuracy for Wave Propagation Problems”. Journal of Soil Mechanics and Foundation Devision 99(5), 421-427, 1973.
  • [30] Dafalias YF, Manzari M. “Simple plasticity sand model accounting for fabric change effects”. Journal of Engineering Mechanics, 130(6), 622-634, 2004.
  • [31] Toloza BP. Liquefaction Modelling using the PM4Sand Soil Constitutive Model in PLAXIS 2D. MSc Thesis, Delft University of Technology, The Netherlands, 2018.
  • [32] Boulanger RW, Munter SK, Krage CP, DeJong JT. “Liquefaction evaluation of interbedded soil deposit: Çark Canal in 1999 M7. 5 Kocaeli earthquake”. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), 1-20, 2019.
  • [33] Quevedo VHP. Seismic liquefaction analysis of a critical facility with PM4Sand in Plaxis. MSc Thesis, Delft University of Technology, The Netherlands, 2019.
  • [34] Bolton MD. "The strength and dilatancy of sands". Géotechnique, 3(36), 65-78, 1986.
  • [35] Bastidas AMP. Ottawa F-65 Sand Characterization. PhD Thesis, University of California, Davis, USA, 2016.
  • [36] Brinkgreve RBJ, Engin E, Engin HK. Validation of Empirical Formulas to Derive Model Parameters For Sands. Editors: Benz T, Nordal S. Numerical Methods in Geotechnical Engineering, 137-142, Rotterdam, The Netherlands: CRC Press, Balkema, 2010.
  • [37] Plaxis BV. “Plaxis The PM4Sand Model 2018”. https://communities.bentley.com/products/geotechanalysis/w/plaxis-soilvision-wiki/46105/udsmpm4sand (03.02.2021).
  • [38] Biot MA. “General solutions of the equations of elasticity and consolidation for porous material”. Journal of Applied Mechanics, 23(1), 91-96, 1956.
  • [39] Idriss IM, Boulanger RW. Soil Liquefaction During Earthquakes. 1st ed. Oakland, USA, Earthquake Engineering Research Institute, 2008.
  • [40] Hashash YMA, Musgrove MI, Harmon JA, Ilhan O, Xing G, Numanoglu O, Groholski DR, Phillips CA, Park D. “DEEPSOIL 7.0, User Manual”. http://deepsoil.cee.illinois.edu/Files/DEEPSOIL_User_Ma nual_v7.pdf (02.05.2021).
  • [41] Rocscience Incorporation. “Settle3D Liquefaction Theory Manual”. https://static.rocscience.cloud/assets/verification-andtheory/Settle3/Settle3D-Liquefaction-TheoryManual.pdf (8.05.2021).
  • [42] IBM Corporation. “IBM SPSS Statistics for Windows, Version 26.0”. https://www.ibm.com/support/pages/downloadingibm-spss-statistics-26 (24.05.2021).
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section İnşaat Müh. / Çevre Müh. / Jeoloji Müh.
Authors

Ozan Subaşı

Recep İyisan This is me

Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 28 Issue: 3

Cite

APA Subaşı, O., & İyisan, R. (2022). Sıvılaşma nedeniyle meydana gelen oturmaların PM4Sand bünye modeli ile incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(3), 378-388.
AMA Subaşı O, İyisan R. Sıvılaşma nedeniyle meydana gelen oturmaların PM4Sand bünye modeli ile incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. June 2022;28(3):378-388.
Chicago Subaşı, Ozan, and Recep İyisan. “Sıvılaşma Nedeniyle Meydana Gelen oturmaların PM4Sand bünye Modeli Ile Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, no. 3 (June 2022): 378-88.
EndNote Subaşı O, İyisan R (June 1, 2022) Sıvılaşma nedeniyle meydana gelen oturmaların PM4Sand bünye modeli ile incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 3 378–388.
IEEE O. Subaşı and R. İyisan, “Sıvılaşma nedeniyle meydana gelen oturmaların PM4Sand bünye modeli ile incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 28, no. 3, pp. 378–388, 2022.
ISNAD Subaşı, Ozan - İyisan, Recep. “Sıvılaşma Nedeniyle Meydana Gelen oturmaların PM4Sand bünye Modeli Ile Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/3 (June 2022), 378-388.
JAMA Subaşı O, İyisan R. Sıvılaşma nedeniyle meydana gelen oturmaların PM4Sand bünye modeli ile incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:378–388.
MLA Subaşı, Ozan and Recep İyisan. “Sıvılaşma Nedeniyle Meydana Gelen oturmaların PM4Sand bünye Modeli Ile Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 28, no. 3, 2022, pp. 378-8.
Vancouver Subaşı O, İyisan R. Sıvılaşma nedeniyle meydana gelen oturmaların PM4Sand bünye modeli ile incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(3):378-8.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif