Research Article
BibTex RIS Cite

Prizmatik ve prizmatik olmayan farklı konik konsol kirişlerin büyük genlikli serbest titreşim analizi

Year 2023, Volume: 29 Issue: 4, 370 - 376, 31.08.2023

Abstract

Bu makale, farklı koniklik oranları için sonlu elemanlar yöntemini kullanarak konsantre uç yüklerine maruz kalan prizmatik (uzunluk boyunca değişmeyen enine kesit) ve prizmatik olmayan (konik, yani uzunluk boyunca değişen enine kesit) konsol kirişler için büyük sapma verileri sunmaktadır. Yaklaşık doğrusal olmayan çözüm, bir polinom fonksiyonunun perspektifinden türetilir. Prizmatik olmayan konsol kirişlerle ilişkili olan konik kirişlerin farklı genişlikleri, derinlikleri ve çapları vardır. Yukarıda bahsedilen ve analiz edilen büyük yer değiştirme verileri kullanılarak, konik (prizmatik) ve konik olmayan (prizmatik) konik kiriş için büyük genlikli birinci mod frekansını değerlendirmek için çok basit bir yaklaşım kullanılır. Mevcut yaklaşım etkin bir şekilde kullanılabilir. literatürde mevcut olan diğer yöntemlere kıyasla çok daha az bilgisayar kapasitesi ile doğru sonuçları bulmaktır. Mevcut bulgular ile bibliyografik veriler arasındaki fark gösterilmektedir. Bu çalışmanın ana amacı, konik kirişli olan ve olmayan büyük genlikli birinci mod serbest titreşim frekansı problemleri için yük parametresi (𝜆)ile uç eğimi (𝛼) ve uç genliği (𝑎/𝐿) cinsinden polinom fonksiyonlarının basit tanımına katkıda bulunmaktır. Büyük genlikli birinci mod frekansı (𝛺) uç eğimi (𝛼) ile artar. Bu, prizmatik ve prizmatik olmayan konsol kirişlerin sertleşme tipi doğrusal olmayanlık sergilediğini gösterir. Belirli bir uç eğiminde (𝛼), çap konikliği, diğer konik kirişlerden ve düzgün kirişlerden daha yüksek frekans gösterir.Mevcut çalışmalara göre, daha düşük bir uç eğimi (𝛼)veya genlik (𝑎/𝐿) aralığı ile sınırlandırılabilir.

References

  • [1] Shukla RK. Vibration Analysis of Tapered Beam. Master’s Thesis, National Institute of Technology, Rourkela, India, 2013.
  • [2] Yaşar P, Semih B. “Free vibration analysis of mixed supported beam”. Pamukkale University Journal of Engineering Sciences, 26(1), 1-8, 2020.
  • [3] Pany C, Parthan S, Mukhopadhyay M. “Free vibration analysis of orthogonally supported curved panels”.Journal ofSound Vibration, 241(2), 315-318, 2001.
  • [4] Rosonberg RM. “Non-linear oscillations”.Applied Mechanics Review, 14(11), 837-841,1961.
  • [5] Rao BN, Rao GV. “Large amplitude vibrations of clampedfree and free-free uniform beams”. Journal ofSound Vibration, 134(2), 353-358, 1989.
  • [6] Verma MK, KrishnaMurty AV. “Non-linear vibration of non-uniform beam with concentrated masses”. Journal ofSound Vibration, 33, 1-12,1974.
  • [7] Rao BN ,Rao GV. “Large amplitude vibrations of a tapered cantilever beam”. Journal ofSound Vibration, 127(1), 173-178, 1988.
  • [8] Sun W, Sun Y, Yu Y,Zheng S. “Nonlinear vibration analysis of a type of tapered cantilever beams by using an analytical approximate method”. Structural Engineering and Mechanics, 59(1), 1-14, 2016.
  • [9] Baghani M, Mazaheri H, Salarieh H. “Analysis of large amplitude free vibrations of clamped tapered beams on a nonlinear elastic foundation”. Applied Mathematical Model, 38(3), 1176-1186, 2014.
  • [10] Hoffmann JA, Wertheimer T.“Cantilever beam vibrations”. Journal ofSound Vibration, 229(5), 1269-1276, 2000.
  • [11] Pany C, Rao GV. “Calculation of non-linear fundamental frequency of a cantilever beam using non-linear stiffness”. Journal ofSound Vibration, 256(4), 787-790, 2002.
  • [12] Pany C, Rao GV. “Large amplitude free vibrations of a uniform spring-hinged cantilever beam”. Journal ofSound Vibration, 271, 1163-1169, 2004.
  • [13] Bisshopp KE. “Approximations for large deflection of a cantilever beam”. Quarterly of Applied Mechanics, 30, 521-526, 1973.
  • [14] EMRC. Users Manual for NISA II. Michigan, USA,EMRC Publishers, 1994

Large amplitude free vibrations analysis of prismatic and non-prismatic different tapered cantilever beams

Year 2023, Volume: 29 Issue: 4, 370 - 376, 31.08.2023

Abstract

This article presents large deflection data for prismatic (unvarying cross section across length) and non-prismatic (tapered, i.e. varying cross section across length) cantilever beams subjected to concentrated tip loads using the finite element method for different taper ratios. The approximate nonlinear solution is derived from the perspective of a polynomial function. The tapered beams that correlate to the nonprismatic cantilever beams have different widths, depths, and diameters. Using the aforementioned large displacement data that have been analysed, a very simple approach is used to evaluate the large amplitude first mode frequency for the cantilever beam with (nonprismatic) tapered and without (prismatic) tapered. The current approach can be used effectively to find accurate results with far less computer capacity as compared to other methods available in the literature. The difference between the current findings and the bibliographic data is shown. The major goal of this work is to contribute to the simple description of polynomial functions for large amplitude first mode free vibration frequency problems with and without tapered beams in terms load parameter(𝜆) versus tip slope (𝛼)and tip amplitude(𝑎/𝐿). Large amplitude first mode frequency (𝛺) increases with tip slope(𝛼). This indicates that the prismatic and non-prismatic cantilever beams exhibit hardening type nonlinearity. At a particular tip slope(𝛼), the diameter taper shows higher frequency than other tapered beams and uniform beams. According to current studies, it can be restricted to a lower range of tip slope(𝛼)or amplitude(𝑎/𝐿).

References

  • [1] Shukla RK. Vibration Analysis of Tapered Beam. Master’s Thesis, National Institute of Technology, Rourkela, India, 2013.
  • [2] Yaşar P, Semih B. “Free vibration analysis of mixed supported beam”. Pamukkale University Journal of Engineering Sciences, 26(1), 1-8, 2020.
  • [3] Pany C, Parthan S, Mukhopadhyay M. “Free vibration analysis of orthogonally supported curved panels”.Journal ofSound Vibration, 241(2), 315-318, 2001.
  • [4] Rosonberg RM. “Non-linear oscillations”.Applied Mechanics Review, 14(11), 837-841,1961.
  • [5] Rao BN, Rao GV. “Large amplitude vibrations of clampedfree and free-free uniform beams”. Journal ofSound Vibration, 134(2), 353-358, 1989.
  • [6] Verma MK, KrishnaMurty AV. “Non-linear vibration of non-uniform beam with concentrated masses”. Journal ofSound Vibration, 33, 1-12,1974.
  • [7] Rao BN ,Rao GV. “Large amplitude vibrations of a tapered cantilever beam”. Journal ofSound Vibration, 127(1), 173-178, 1988.
  • [8] Sun W, Sun Y, Yu Y,Zheng S. “Nonlinear vibration analysis of a type of tapered cantilever beams by using an analytical approximate method”. Structural Engineering and Mechanics, 59(1), 1-14, 2016.
  • [9] Baghani M, Mazaheri H, Salarieh H. “Analysis of large amplitude free vibrations of clamped tapered beams on a nonlinear elastic foundation”. Applied Mathematical Model, 38(3), 1176-1186, 2014.
  • [10] Hoffmann JA, Wertheimer T.“Cantilever beam vibrations”. Journal ofSound Vibration, 229(5), 1269-1276, 2000.
  • [11] Pany C, Rao GV. “Calculation of non-linear fundamental frequency of a cantilever beam using non-linear stiffness”. Journal ofSound Vibration, 256(4), 787-790, 2002.
  • [12] Pany C, Rao GV. “Large amplitude free vibrations of a uniform spring-hinged cantilever beam”. Journal ofSound Vibration, 271, 1163-1169, 2004.
  • [13] Bisshopp KE. “Approximations for large deflection of a cantilever beam”. Quarterly of Applied Mechanics, 30, 521-526, 1973.
  • [14] EMRC. Users Manual for NISA II. Michigan, USA,EMRC Publishers, 1994
There are 14 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Research Article
Authors

Chıtaranjan Pany

Publication Date August 31, 2023
Published in Issue Year 2023 Volume: 29 Issue: 4

Cite

APA Pany, C. (2023). Large amplitude free vibrations analysis of prismatic and non-prismatic different tapered cantilever beams. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(4), 370-376.
AMA Pany C. Large amplitude free vibrations analysis of prismatic and non-prismatic different tapered cantilever beams. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. August 2023;29(4):370-376.
Chicago Pany, Chıtaranjan. “Large Amplitude Free Vibrations Analysis of Prismatic and Non-Prismatic Different Tapered Cantilever Beams”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, no. 4 (August 2023): 370-76.
EndNote Pany C (August 1, 2023) Large amplitude free vibrations analysis of prismatic and non-prismatic different tapered cantilever beams. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 4 370–376.
IEEE C. Pany, “Large amplitude free vibrations analysis of prismatic and non-prismatic different tapered cantilever beams”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 4, pp. 370–376, 2023.
ISNAD Pany, Chıtaranjan. “Large Amplitude Free Vibrations Analysis of Prismatic and Non-Prismatic Different Tapered Cantilever Beams”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/4 (August 2023), 370-376.
JAMA Pany C. Large amplitude free vibrations analysis of prismatic and non-prismatic different tapered cantilever beams. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:370–376.
MLA Pany, Chıtaranjan. “Large Amplitude Free Vibrations Analysis of Prismatic and Non-Prismatic Different Tapered Cantilever Beams”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 4, 2023, pp. 370-6.
Vancouver Pany C. Large amplitude free vibrations analysis of prismatic and non-prismatic different tapered cantilever beams. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(4):370-6.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.