Research Article
BibTex RIS Cite

Mineralogical-Geochemical and gemological investigations garnet porphyroblasts (Lal Stones) in Menderes massif (Hacıaliler/Çine-Aydın)

Year 2023, Volume: 29 Issue: 7, 769 - 782, 30.12.2023

Abstract

Ancient period naturalist Plinius referred that almandine composition Lal Stones (Granat) which had been widely used in the Hellenistic and Roman periods, were extracted from Alabanda (Çine) and Orthosia (Yenipazar) in Karia in Anatolia. The garnet samples, which are the subject of this study, are found in the middle-high grade, gneiss, and mica-schist in the Menderes Massif in Hacıaliler (Çine-Aydın) region. Purplish-brown and matt garnet porphyroblasts, varying between 0.5-2 cm in size, have crystallized in dodecahedron form. Garnet minerals, display poikloblastic texture in microscopic examinations, are in a highly fractured structure and contain plenty of quartz, muscovite, and opaque mineral inclusions. In line with a non-destructive analysis technique, Confocal Raman Spectroscopy studies, it has been determined that garnets present a total of 10 different Raman vibrations, 910-912, 349 and 553-555 cm-1 strong, and are typically in almandine composition. According to the results of mineral chemistry, garnets have the chemical formula of Alm0.72-0.87 Grs0.07-0.19 Pyr0.02-0.13 Sps0.00-0.02. In accordance with garnet-biotite geothermometer calculations, it was determined that garnets are formed at an average temperature of 565.3±20.8 °C and under the pressure of 6.6 kbar. It was concluded that Hacıaliler garnets demonstrated depletion in terms of LIL elements (Cs, Rb, Ba, K, Sr, Pb) in the average continental crust (MCC) multi-element variation diagram. It was discovered that garnet samples demonstrated enrichment in terms of REE (∑REE: 192.2-212.1), (La/Sm)N ratio 2.62-2.89, (Sm/Yb)N ratio 0.31-0.38 and (Eu) /Eu*)N ratio vary between 0.41-0.44 in REE multi-element variation diagram normalized to chondrite. According to the nondestructive gemological tests, the specific gravity of garnet crystals varies between 3.33 and 3.64, and the refractive index values were found to be around 1.80-1.81. According to the L*a*b* color system, the color average of garnet crystals was determined to be as L*: 46.25 a*: 6.55 b*: 6.60 (purplish brown). As a result of mineralogical, geochemical, and gemological evaluations, it has been concluded that Hacıaliler garnet samples have undergone multi-stage metamorphism and have lost their bright and transparent crystal forms through the subsequent geological processes (weathering, alteration, etc.); therefore, they do not present the characteristics of gemstones. In addition, it is thought that garnet samples may have an important potential in terms of their REE contents.

References

  • [1] King RJ. “Minerals explained 26: The garnets”. Geology Today, 15(1), 34-37, 1999.
  • [2] Liang P, Zhang Y, Xie Y. “Chemical Composition and Genesis Implication of Garnet from the Laoshankou Fe-CuAu Deposit, the Northern Margin of East Junggar, NW China”. Minerals, 11(3), 1-25, 2021.
  • [3] Stockton CM, Manson DV. “A proposed new classification for gem-quality garnets”. Gems and Gemology, 21(4), 205-218, 1985.
  • [4] Baxter EF, Caddick MJ, Ague JJ. “Garnet: common mineral, uncommonly useful”. Elements, 9(6), 415-419, 2013.
  • [5] Deer WA, Howie RA, Zussman J. An Introduction to the Rock Forming Minerals. 2nd ed. London, England, Longman, 1992.
  • [6] Klein C, Philpotts A. Earth Materials: Introduction to Mineralogy and Petrology. 2nd ed. Cambridge, England, Cambridge University Press, 2017.
  • [7] Yavuz F, Yıldırım DK. “WinGrt, a Windows program for garnet supergroup minerals”. Journal of Geosciences, 65, 71-95, 2020.
  • [8] Baxter EF, Caddick MJ, Dragovic B. “Garnet: a rock-forming mineral Petro chronometer”. Reviews Mineralogy and Geochemistry, 83, 469-533, 2017.
  • [9] Shang P. International Gem Society. “Garnet Symbolism”. https://www.gemsociety.org/article/garnet-symbolismlegends/ (04.05.2022).
  • [10] Hatipoğlu M. “Archaeo-gemological importance of the ancient Caria city Alabanda (Doğanyurt, Çine-Aydın, Western Turkey)”. 6th International Congress Science and Technology for the Safeguard of Cultural Heritage of the Mediterranean Basin, Athens, Greece, 22-25 October 2013.
  • [11] Erdoğan B, Akay E, Hasözbek A. “Menderes Masifi'ndeki (Batı Anadolu) gnaysik granitlerin yerleşim özellikleri ve masifin tektonik evrimindeki yeri; yeni arazi bulguları ve yaş tayinleri”. Maden Tetkik ve Arama Dergisi, 142, 167-193, 2011.
  • [12] Demirbaş E. Kavşit (Çine-Aydın) Yöresinin jeolojisi ve Feldispat Yataklarının İncelenmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya, Türkiye, 2010
  • [13] Özkaya MM. Eskiçine ve Kafaca arasında Menderes Masifi'nin Jeokronolojisi, Jeokimyası, Yapısal Jeolojisi ve Evrimi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 1995.
  • [14] Yalçın AH. Çine Güneyi (Akçaova) Pegmetitlerinin Jeolojisi ve Petrojenezi. Yüksek Lisans Tezi, İstabul Universitesi, İstanbul, Türkiye, 1995.
  • [15] Lüle-Whipp Ç. İzmir-Cumaovası-Görece Köyü Civarı Volkanitleri ve Menderes Masifi Metamorfitleri İçindeki Bazı Granatların Mineralojik-Petrografik ve Jeokimyasal İncelenmesi ve Olası Arkeogemolojik Bağlantıları. Doktora Tezi, Hacettepe Üniversitesi, Ankara, Türkiye, 2006.
  • [16] Koralay OE, Candan O, Akal C, Dora OÖ, Chen F, Satır M, Oberhänslı R. “Geology and geochronology of the PanAfrican and Triassic metagranitoids in the Menderes Massif, Western Anatolia Turkey”. Bulletin of The Mineral Research and Exploration 142, 69-121, 2011.
  • [17] RRUFF. “Database of X-Ray Diffraction”. http://rruff.info/repository/sample_child_record_powde r/by_minerals/Almandine__R060099- 9__Powder__DIF_File__10051.txt (05.06.2022).
  • [18] RRUFF. “Database of X-Ray Diffraction”. http://rruff.info/repository/sample_child_record_powde r/by_minerals/Grossular__R040066- 1__Powder__DIF_File__3313.txt (05.06.2022).
  • [19] RRUFF. “Database of X-Ray Diffraction”. http://rruff.info/repository/sample_child_record_powde r/by_minerals/Pyrope__R100153- 9__Powder__DIF_File__11226.txt (05.06.2022).
  • [20] RRUFF. “Database of X-Ray Diffraction”. http://rruff.info/repository/sample_child_record_powde r/by_minerals/Spessartine__R060177- 1__Powder__DIF_File__6682.txt (05.06.2022).
  • [21] McMillan PF. “Raman spectroscopy in mineralogy and geochemistry”. Annual Review of Earth and Planetary Sciences, 17, 225-283, 1989.
  • [22] Frost R, Kloprogge T, Schmidt J. “Non-destructive identification of minerals by Raman microscopy”. Internet Journal of Vibrational Spectroscopy, 3, 1-13, 1999.
  • [23] Hope GA, Woods R, Munce CG. “Raman microprobe mineral identification”. Minerals Engineering, 14, 1565- 1577, 2001.
  • [24] Mayo DW, Miller FA, Hannah RW. Course Notes on the Interpretation of Infrared and Raman Spectra. New Jersey, USA, John Wiley & Sons, Hoboken, 2004.
  • [25] Koralay T, Ören U. “Determination of spectroscopic features and gemstone potential of garnet crystals from the Çamköy region (Aydın - SW Turkey) using XRPD, XRF, Confocal Raman Spectroscopy, EPMA and gemological test methods” Periodico di Mineralogia, 89, 105-123, 2020.
  • [26] Güllü B, Kadıoğlu YK. “Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods”. Spectrochimica Acta Part A, 183, 68-74, 2017.
  • [27] Akçe MA, Kadıoğlu YK. “Raman spektroskopisinin ilkeleri ve mineral tanımlamalarında kullanılması” Nevşehir Bilim ve Teknoloji Dergisi, 9(2), 99-115, 2020.
  • [28] RRUFF. “Database of Raman spectroscopy”. http://rruff.info/almandine/R060099 (06.06.2022).
  • [29] Moore RK, White WB, Long TV. “Vibrational spectra of the common silicates: I. the garnets”. American Mineralogist, 56, 54-71, 1971.
  • [30] Hofmeister A.M., Chopelas A., Vibrational spectroscopy of end-member silicate garnets, Physics and Chemistry of Minerals, 17, 503-526, 1991.
  • [31] Kolesov BA, Geiger CA. “Raman spectra of silicate garnets”. Physics and Chemistry of Minerals, 25, 142-151, 1998.
  • [32] Wright WI. “The composition and occurrence of garnets”. American Mineralogist, 23, 436-449, 1938.
  • [33] Grew ES, Locock AJ, Mills SJ, Galuskina IO, Galuskin EV, Hålenius U. “Nomenclature of the garnet supergroup”. American Mineralogist, 98(4), 785-811, 2013.
  • [34] Pagel M, Barbey P. Geothermometers. Editors: Clare PM, Rhodes WF. Encyclopedia of Geochemistry, 302-305, Berlin, Germany, Springer, 1998.
  • [35] Putirka K. Geothermometry and Geobarometry. Editors: White WW. Encyclopedia of Geochemistry, 597-614, Berlin, Germany, Springer, 2018.
  • [36] Alpaslan M, Boztuğ, D. “Metamorfizma basınç ve sıcaklık koşullarının belirlenmesi (Jeotermobarometre): Yıldızeli (Sivas batısı) yöresinde bir uygulama”. Jeoloji Mühendisliği Dergisi, 46, 1-27, 1995.
  • [37] Tenekecioğlu G. Kırşehir yöresinde bölgesel metamorfik kayaçlardaki ‘granat-biyotit’ jeotermometresi kullanılarak metamorfizma sıcaklığının belirlenmesi. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara, Türkiye, 2005
  • [38] Thompson AB. “Mineral reactions in pelitic rock. II. calculation of some P-T-X (Fe-Mg) phase reactions”. American Journal of Science, 276, 425-454, 1976.
  • [39] Ferry JM, Spear F.S. “Experimental calibration of the partitioning of Fe and Mg between biotite and garnet”. Contributions to Mineralogy and Petrology, 66, 113-117, 1978.
  • [40] Hodges KV, Spear FS. “Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire”. American Mineralogist, 67, 1118-1134, 1982.
  • [41] Perchuk LL, Lavrenteva IV. Experimental Investigation of Exchange Equilibria in the System Cordierite-GarnetBiotite. Editor: Saxena SK. Kinetics and equilibrium in mineral reactions, 199-239, New York, USA, Springer 1983.
  • [42] Dasgupta S, Sengupta P, Guha D, Fukuoka M. “A refined garnet-biotite Fe-Mg exchange geothermometer and its application in amphibolites and granulites”. Contributions to Mineralogy and Petrology, 109, 130-137, 1991.
  • [43] Bhattacharya A, Mohanty L, Maji A, Sen SK, Raith M. “Nonideal mixing in the phlogopite-annite binary: constraints from experimental data on the Mg-Fe partitioning and a reformulation of the biotite-garnet thermometer”. Contributions to Mineralogy and Petrology, 111, 87-93, 1992.
  • [44] Holdaway MJ, Lee SM. “Fe-Mg cordierite stability in high grade pelitic rocks based on experimental, theoretical and natural observations”, Contributions to Mineralogy and Petrology, 63(2), 175-198, 1977.
  • [45] Klimpel F, Bau M, Graupner T. “Potential of garnet sand as an unconventional resource of the critical high‐technology metals scandium and rare earth elements”. Scientifc Reports, 11:5306, 2021.
  • [46] Zirakparvar NA. “Industrial garnet as an unconventional heavy rare earth element resource:Preliminary insights from a literature survey of worldwide garnet traceelement concentrations”. Ore Geology Reviews, 148, 1-7, 2022.
  • [47] Carlson WD. “Rates and mechanism of Y, REE, and Cr diffusion in garnet”. American Mineralogist, 97, 1598-1618, 2012.
  • [48] Carlson WD, Gale JD, Wright K. “Incorporation of Y and REEs in aluminosilicate garnet: Energetics from atomistic simulation”. American Mineralogist, 99, 1022-1034, 2014.
  • [49] Hönig S, Čopjaková R, Škoda R, Novák M, Dolejš D, Leichmann J, Galiová MV. “Garnet as a major carrier of the Y and REE in the granitic rocks: An example from the layered anorogenic granite in the Brno Batholith, Czech Republic”. American Mineralogist, 99, 1922-1941, 2014.
  • [50] Sun SS, McDonough WF. “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes”. Geological Society, 42, 313-345, 1989.
  • [51] Rudnick RL, Gao S. Composition of the Continental Crust. Editor: Rudnick RL. Treatise on Geochemistry, 1-64, Devon, United Kingdom, Elsevier, 2004.
  • [52] McDonough WF, Sun S. “The composition of the earth”. Chemical Geology, 120, 223-253, 1995.
  • [53] Evensen NM, Hamilton PJ, O’Nion RK. “Rare earth abundances in chondritic meteorites”. Geochimic et Cosmochimica Acta, 42, 1199-1212, 1978.
  • [54] O’Donoghue M. Gems Their Sources, Descriptions and Identification. 6th ed. Oxford, United Kingdom, Butterworth-Heinemann, Elsevier Linacre House, 2006.

Menderes masifi’ndeki (Hacıaliler/Çine-Aydın) Granat (Lal Taşı) porfiroblastlarının, Mineralojik-Jeokimyasal ve gemolojik incelenmesi

Year 2023, Volume: 29 Issue: 7, 769 - 782, 30.12.2023

Abstract

Antik dönem doğa bilimcisi Plinius, Hellenistik ve Roma döneminde yaygın olarak kullanılan almandin bileşimli lal taşlarının (Granat) Anadolu'da Karia'da Alabanda (Çine) ve Orthosia'da (Yenipazar) çıkarıldığından bahsetmektedir. Çalışmaya konu edilen granat örnekleri Hacıaliler (Çine-Aydın) bölgesinde Menderes Masifine ait orta-yüksek dereceli, gnays ve mikaşist bileşimli metamorfik kayaçlar içerisinde bulunmaktadır. Boyutları 0.5-2 cm arasında değişen, morumsu-kahverengi renkli ve mat parlaklık gösteren granat porfiroblastları dodekahedron formda kristallenmişlerdir. Mikroskobik incelemelerinde poikloblast doku gösteren granat mineralleri oldukça kırıklı bir yapıda olup, bol miktarda kuvars, muskovit ve opak mineral kapanımları içermektedir. Tahribatsız bir analiz tekniği olan Konfokal Raman spektroskopisi çalışmalarına göre granatların 910-912, 349 ve 553-555 cm-1 güçlü olmak üzere toplam 10 farklı Raman titreşimi gösterdikleri ve tipik olarak almandin bileşiminde oldukları tespit edilmiştir. Mineral kimyası sonuçlarına göre granatlar Alm0.72-0.87 Grs0.07- 0.19 Pyr0.02-0.13 Sps0.00-0.02 kimyasal formülüne sahiptirler. Granat-Biyotit jeotermometre hesaplamalarına göre granatların ortalama 565.3 ± 20.8°C sıcaklıkta, 6.6 kbar basınç altında oluştukları belirlenmiştir. Hacıaliler granatlarının ortalama kıtasal kabuk çoklu element değişim diyagramında LIL elementleri (Cs, Rb, Ba, K, Sr, Pb) bakımından fakirleşme gösterdiği belirlenmiştir. Kondrit’e göre normalize edilmiş NTE çoklu element değişim diyagramında granat örneklerinin NTE bakımından zenginleşme gösterdikleri (∑NTE: 192.2- 212.1), (La/Sm)N oranı 2.62-2.89, (Sm/Yb)N oranı 0.31-0.38 ve (Eu/Eu*)N oranı 0.41-0.44 arasında değiştiği belirlenmiştir. Gemolojik testlere göre granat kristallerinin özgül ağırlıkları 3.33 ile 3.64 arasında değişmekte, kırılma indis değerleri ise 1.81-1.95 civarındadır. L*a*b* renk sistemine göre granat kristallerinin renk ortalaması L*:46.25 a*:6.55 b*:6.60 (morumsu kahverengi) olarak belirlenmiştir. Mineralojik, jeokimyasal ve gemolojik değerlendirmeler sonucunda Hacıaliler granat örneklerinin çok evreli metamorfizmaya uğramış olması ve sonrasında gelişen jeolojik süreçlerle (ayrışma, alterasyon vb.) parlak ve şeffaf olan kristal formlarını kaybettikleri bu nedenle süstaşı özelliği göstermedikleri değerlendirilmiştir. Ayrıca granat örneklerinin NTE içerikleri bakımından önemli bir potansiyele sahip olabilecekleri düşünülmektedir.

References

  • [1] King RJ. “Minerals explained 26: The garnets”. Geology Today, 15(1), 34-37, 1999.
  • [2] Liang P, Zhang Y, Xie Y. “Chemical Composition and Genesis Implication of Garnet from the Laoshankou Fe-CuAu Deposit, the Northern Margin of East Junggar, NW China”. Minerals, 11(3), 1-25, 2021.
  • [3] Stockton CM, Manson DV. “A proposed new classification for gem-quality garnets”. Gems and Gemology, 21(4), 205-218, 1985.
  • [4] Baxter EF, Caddick MJ, Ague JJ. “Garnet: common mineral, uncommonly useful”. Elements, 9(6), 415-419, 2013.
  • [5] Deer WA, Howie RA, Zussman J. An Introduction to the Rock Forming Minerals. 2nd ed. London, England, Longman, 1992.
  • [6] Klein C, Philpotts A. Earth Materials: Introduction to Mineralogy and Petrology. 2nd ed. Cambridge, England, Cambridge University Press, 2017.
  • [7] Yavuz F, Yıldırım DK. “WinGrt, a Windows program for garnet supergroup minerals”. Journal of Geosciences, 65, 71-95, 2020.
  • [8] Baxter EF, Caddick MJ, Dragovic B. “Garnet: a rock-forming mineral Petro chronometer”. Reviews Mineralogy and Geochemistry, 83, 469-533, 2017.
  • [9] Shang P. International Gem Society. “Garnet Symbolism”. https://www.gemsociety.org/article/garnet-symbolismlegends/ (04.05.2022).
  • [10] Hatipoğlu M. “Archaeo-gemological importance of the ancient Caria city Alabanda (Doğanyurt, Çine-Aydın, Western Turkey)”. 6th International Congress Science and Technology for the Safeguard of Cultural Heritage of the Mediterranean Basin, Athens, Greece, 22-25 October 2013.
  • [11] Erdoğan B, Akay E, Hasözbek A. “Menderes Masifi'ndeki (Batı Anadolu) gnaysik granitlerin yerleşim özellikleri ve masifin tektonik evrimindeki yeri; yeni arazi bulguları ve yaş tayinleri”. Maden Tetkik ve Arama Dergisi, 142, 167-193, 2011.
  • [12] Demirbaş E. Kavşit (Çine-Aydın) Yöresinin jeolojisi ve Feldispat Yataklarının İncelenmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya, Türkiye, 2010
  • [13] Özkaya MM. Eskiçine ve Kafaca arasında Menderes Masifi'nin Jeokronolojisi, Jeokimyası, Yapısal Jeolojisi ve Evrimi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 1995.
  • [14] Yalçın AH. Çine Güneyi (Akçaova) Pegmetitlerinin Jeolojisi ve Petrojenezi. Yüksek Lisans Tezi, İstabul Universitesi, İstanbul, Türkiye, 1995.
  • [15] Lüle-Whipp Ç. İzmir-Cumaovası-Görece Köyü Civarı Volkanitleri ve Menderes Masifi Metamorfitleri İçindeki Bazı Granatların Mineralojik-Petrografik ve Jeokimyasal İncelenmesi ve Olası Arkeogemolojik Bağlantıları. Doktora Tezi, Hacettepe Üniversitesi, Ankara, Türkiye, 2006.
  • [16] Koralay OE, Candan O, Akal C, Dora OÖ, Chen F, Satır M, Oberhänslı R. “Geology and geochronology of the PanAfrican and Triassic metagranitoids in the Menderes Massif, Western Anatolia Turkey”. Bulletin of The Mineral Research and Exploration 142, 69-121, 2011.
  • [17] RRUFF. “Database of X-Ray Diffraction”. http://rruff.info/repository/sample_child_record_powde r/by_minerals/Almandine__R060099- 9__Powder__DIF_File__10051.txt (05.06.2022).
  • [18] RRUFF. “Database of X-Ray Diffraction”. http://rruff.info/repository/sample_child_record_powde r/by_minerals/Grossular__R040066- 1__Powder__DIF_File__3313.txt (05.06.2022).
  • [19] RRUFF. “Database of X-Ray Diffraction”. http://rruff.info/repository/sample_child_record_powde r/by_minerals/Pyrope__R100153- 9__Powder__DIF_File__11226.txt (05.06.2022).
  • [20] RRUFF. “Database of X-Ray Diffraction”. http://rruff.info/repository/sample_child_record_powde r/by_minerals/Spessartine__R060177- 1__Powder__DIF_File__6682.txt (05.06.2022).
  • [21] McMillan PF. “Raman spectroscopy in mineralogy and geochemistry”. Annual Review of Earth and Planetary Sciences, 17, 225-283, 1989.
  • [22] Frost R, Kloprogge T, Schmidt J. “Non-destructive identification of minerals by Raman microscopy”. Internet Journal of Vibrational Spectroscopy, 3, 1-13, 1999.
  • [23] Hope GA, Woods R, Munce CG. “Raman microprobe mineral identification”. Minerals Engineering, 14, 1565- 1577, 2001.
  • [24] Mayo DW, Miller FA, Hannah RW. Course Notes on the Interpretation of Infrared and Raman Spectra. New Jersey, USA, John Wiley & Sons, Hoboken, 2004.
  • [25] Koralay T, Ören U. “Determination of spectroscopic features and gemstone potential of garnet crystals from the Çamköy region (Aydın - SW Turkey) using XRPD, XRF, Confocal Raman Spectroscopy, EPMA and gemological test methods” Periodico di Mineralogia, 89, 105-123, 2020.
  • [26] Güllü B, Kadıoğlu YK. “Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods”. Spectrochimica Acta Part A, 183, 68-74, 2017.
  • [27] Akçe MA, Kadıoğlu YK. “Raman spektroskopisinin ilkeleri ve mineral tanımlamalarında kullanılması” Nevşehir Bilim ve Teknoloji Dergisi, 9(2), 99-115, 2020.
  • [28] RRUFF. “Database of Raman spectroscopy”. http://rruff.info/almandine/R060099 (06.06.2022).
  • [29] Moore RK, White WB, Long TV. “Vibrational spectra of the common silicates: I. the garnets”. American Mineralogist, 56, 54-71, 1971.
  • [30] Hofmeister A.M., Chopelas A., Vibrational spectroscopy of end-member silicate garnets, Physics and Chemistry of Minerals, 17, 503-526, 1991.
  • [31] Kolesov BA, Geiger CA. “Raman spectra of silicate garnets”. Physics and Chemistry of Minerals, 25, 142-151, 1998.
  • [32] Wright WI. “The composition and occurrence of garnets”. American Mineralogist, 23, 436-449, 1938.
  • [33] Grew ES, Locock AJ, Mills SJ, Galuskina IO, Galuskin EV, Hålenius U. “Nomenclature of the garnet supergroup”. American Mineralogist, 98(4), 785-811, 2013.
  • [34] Pagel M, Barbey P. Geothermometers. Editors: Clare PM, Rhodes WF. Encyclopedia of Geochemistry, 302-305, Berlin, Germany, Springer, 1998.
  • [35] Putirka K. Geothermometry and Geobarometry. Editors: White WW. Encyclopedia of Geochemistry, 597-614, Berlin, Germany, Springer, 2018.
  • [36] Alpaslan M, Boztuğ, D. “Metamorfizma basınç ve sıcaklık koşullarının belirlenmesi (Jeotermobarometre): Yıldızeli (Sivas batısı) yöresinde bir uygulama”. Jeoloji Mühendisliği Dergisi, 46, 1-27, 1995.
  • [37] Tenekecioğlu G. Kırşehir yöresinde bölgesel metamorfik kayaçlardaki ‘granat-biyotit’ jeotermometresi kullanılarak metamorfizma sıcaklığının belirlenmesi. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara, Türkiye, 2005
  • [38] Thompson AB. “Mineral reactions in pelitic rock. II. calculation of some P-T-X (Fe-Mg) phase reactions”. American Journal of Science, 276, 425-454, 1976.
  • [39] Ferry JM, Spear F.S. “Experimental calibration of the partitioning of Fe and Mg between biotite and garnet”. Contributions to Mineralogy and Petrology, 66, 113-117, 1978.
  • [40] Hodges KV, Spear FS. “Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire”. American Mineralogist, 67, 1118-1134, 1982.
  • [41] Perchuk LL, Lavrenteva IV. Experimental Investigation of Exchange Equilibria in the System Cordierite-GarnetBiotite. Editor: Saxena SK. Kinetics and equilibrium in mineral reactions, 199-239, New York, USA, Springer 1983.
  • [42] Dasgupta S, Sengupta P, Guha D, Fukuoka M. “A refined garnet-biotite Fe-Mg exchange geothermometer and its application in amphibolites and granulites”. Contributions to Mineralogy and Petrology, 109, 130-137, 1991.
  • [43] Bhattacharya A, Mohanty L, Maji A, Sen SK, Raith M. “Nonideal mixing in the phlogopite-annite binary: constraints from experimental data on the Mg-Fe partitioning and a reformulation of the biotite-garnet thermometer”. Contributions to Mineralogy and Petrology, 111, 87-93, 1992.
  • [44] Holdaway MJ, Lee SM. “Fe-Mg cordierite stability in high grade pelitic rocks based on experimental, theoretical and natural observations”, Contributions to Mineralogy and Petrology, 63(2), 175-198, 1977.
  • [45] Klimpel F, Bau M, Graupner T. “Potential of garnet sand as an unconventional resource of the critical high‐technology metals scandium and rare earth elements”. Scientifc Reports, 11:5306, 2021.
  • [46] Zirakparvar NA. “Industrial garnet as an unconventional heavy rare earth element resource:Preliminary insights from a literature survey of worldwide garnet traceelement concentrations”. Ore Geology Reviews, 148, 1-7, 2022.
  • [47] Carlson WD. “Rates and mechanism of Y, REE, and Cr diffusion in garnet”. American Mineralogist, 97, 1598-1618, 2012.
  • [48] Carlson WD, Gale JD, Wright K. “Incorporation of Y and REEs in aluminosilicate garnet: Energetics from atomistic simulation”. American Mineralogist, 99, 1022-1034, 2014.
  • [49] Hönig S, Čopjaková R, Škoda R, Novák M, Dolejš D, Leichmann J, Galiová MV. “Garnet as a major carrier of the Y and REE in the granitic rocks: An example from the layered anorogenic granite in the Brno Batholith, Czech Republic”. American Mineralogist, 99, 1922-1941, 2014.
  • [50] Sun SS, McDonough WF. “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes”. Geological Society, 42, 313-345, 1989.
  • [51] Rudnick RL, Gao S. Composition of the Continental Crust. Editor: Rudnick RL. Treatise on Geochemistry, 1-64, Devon, United Kingdom, Elsevier, 2004.
  • [52] McDonough WF, Sun S. “The composition of the earth”. Chemical Geology, 120, 223-253, 1995.
  • [53] Evensen NM, Hamilton PJ, O’Nion RK. “Rare earth abundances in chondritic meteorites”. Geochimic et Cosmochimica Acta, 42, 1199-1212, 1978.
  • [54] O’Donoghue M. Gems Their Sources, Descriptions and Identification. 6th ed. Oxford, United Kingdom, Butterworth-Heinemann, Elsevier Linacre House, 2006.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Article
Authors

Ufuk Ören

Tamer Koralay

Publication Date December 30, 2023
Published in Issue Year 2023 Volume: 29 Issue: 7

Cite

APA Ören, U., & Koralay, T. (2023). Menderes masifi’ndeki (Hacıaliler/Çine-Aydın) Granat (Lal Taşı) porfiroblastlarının, Mineralojik-Jeokimyasal ve gemolojik incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(7), 769-782.
AMA Ören U, Koralay T. Menderes masifi’ndeki (Hacıaliler/Çine-Aydın) Granat (Lal Taşı) porfiroblastlarının, Mineralojik-Jeokimyasal ve gemolojik incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2023;29(7):769-782.
Chicago Ören, Ufuk, and Tamer Koralay. “Menderes masifi’ndeki (Hacıaliler/Çine-Aydın) Granat (Lal Taşı) porfiroblastlarının, Mineralojik-Jeokimyasal Ve Gemolojik Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, no. 7 (December 2023): 769-82.
EndNote Ören U, Koralay T (December 1, 2023) Menderes masifi’ndeki (Hacıaliler/Çine-Aydın) Granat (Lal Taşı) porfiroblastlarının, Mineralojik-Jeokimyasal ve gemolojik incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 7 769–782.
IEEE U. Ören and T. Koralay, “Menderes masifi’ndeki (Hacıaliler/Çine-Aydın) Granat (Lal Taşı) porfiroblastlarının, Mineralojik-Jeokimyasal ve gemolojik incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 7, pp. 769–782, 2023.
ISNAD Ören, Ufuk - Koralay, Tamer. “Menderes masifi’ndeki (Hacıaliler/Çine-Aydın) Granat (Lal Taşı) porfiroblastlarının, Mineralojik-Jeokimyasal Ve Gemolojik Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/7 (December 2023), 769-782.
JAMA Ören U, Koralay T. Menderes masifi’ndeki (Hacıaliler/Çine-Aydın) Granat (Lal Taşı) porfiroblastlarının, Mineralojik-Jeokimyasal ve gemolojik incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:769–782.
MLA Ören, Ufuk and Tamer Koralay. “Menderes masifi’ndeki (Hacıaliler/Çine-Aydın) Granat (Lal Taşı) porfiroblastlarının, Mineralojik-Jeokimyasal Ve Gemolojik Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 7, 2023, pp. 769-82.
Vancouver Ören U, Koralay T. Menderes masifi’ndeki (Hacıaliler/Çine-Aydın) Granat (Lal Taşı) porfiroblastlarının, Mineralojik-Jeokimyasal ve gemolojik incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(7):769-82.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif