Research Article
BibTex RIS Cite
Year 2018, , 18 - 23, 01.09.2018
https://doi.org/10.17261/Pressacademia.2018.850

Abstract

References

  • Benhabib, J., Spiegel, M. M. (1994). The role of human capital in economic development evidence from aggregate cross-country data. Journal of Monetary economics, 34(2), 143-173.
  • Cheng, M., Han, Y. (2017). Application of a new superposition CES production function model. Journal of Systems Science and Information, 5(5), 462-472.
  • Cobb, C. W., Douglas, P. H. (1928). A theory of production. The American Economic Review, 18(1), 139-165.
  • Deng, J. L. (1982). Control problems of grey systems. Sys. & Contr. Lett., 1(5), 288-294.
  • Godin, A., Kinsella, S. (2013). Production functions at the business end: the case of the European Fiscal Compact. Global & Local Economic Review, 17(1), 153.
  • Honghong, L. (2010, November). A prediction and influence factor analysis of China's food production. In Information Management, Innovation Management and Industrial Engineering (ICIII), 2010 International Conference on (Vol. 2, pp. 30-33). IEEE.
  • Lucas Jr, R. E. (1988). On the mechanics of economic development. Journal of monetary economics, 22(1), 3-42.
  • Mahaboob, B., Venkateswarlu, B., Balasiddamuni, P. (2017). Estimation of parameters of generalized Cobb-Douglas production functional model, IJPT, 9 (1), p.29186.
  • Makridakis, S., Wheelwright, S. C., Hyndman, R. J. (2008). Forecasting methods and applications. John wiley & sons.
  • Mankiw, N. G., Romer, D., Weil, D. N. (1992). A contribution to the empirics of economic growth. The quarterly journal of economics, 107(2), 407-437.
  • Qi, W., Yingsheng, S., Pengfei, J. (2010, December). On the random disturbance term and parameter estimation of CD production function. In Information Science and Engineering (ISISE), 2010 International Symposium on (pp. 51-53). IEEE.
  • Romer, P. M. (1986). Increasing returns and long-run growth. Journal of political economy, 94(5), 1002-1037.
  • Stern, D. I. (2011). Elasticities of substitution and complementarity. Journal of Productivity Analysis, 36(1), 79-89.
  • Thompson, H. (2016). A physical production function for the US economy. Energy Economics, 56, 185-189.
  • Vîlcu, G. E. (2018). On a generalization of a class of production functions. Applied Economics Letters, 25(2), 106-110.
  • Wang, X. (2016). A geometric characterization of homogeneous production models in economics. Filomat, 30(13), 3465-3471.
  • Zhu, S., Wu, Q. J., Wang, Y. (2011, September). Impact of labor force on China's economic growth based on grey metabolic GM (1, 1) model. In Grey Systems and Intelligent Services (GSIS), 2011 IEEE International Conference on (pp. 262-265). IEEE.

PREDICTION OF GROSS DOMESTIC PRODUCT (GDP) BY USING GREY COBB-DOUGLAS PRODUCTION FUNCTION

Year 2018, , 18 - 23, 01.09.2018
https://doi.org/10.17261/Pressacademia.2018.850

Abstract

Purpose- In this paper, we investigate the Grey Cobb-Douglas production model applicable to estimation of economical indicators.

Methodology- In the multi regression model, explanatory variables for estimation of future value of indicatiors is estimated by using Grey Cobb-Douglas model.

Findings- GDP is an indicator for economic growth. We are used the annual data of United State of American economy for 1951 to 2008 and estimated the 2009-2018 years. The sum of the contributions of factors is 1.497 and greater than one, so it shows increasing return to scale.

Conclusion- The percentage of the increase in GDP is greater than that of the increase in capital stock and labor.

References

  • Benhabib, J., Spiegel, M. M. (1994). The role of human capital in economic development evidence from aggregate cross-country data. Journal of Monetary economics, 34(2), 143-173.
  • Cheng, M., Han, Y. (2017). Application of a new superposition CES production function model. Journal of Systems Science and Information, 5(5), 462-472.
  • Cobb, C. W., Douglas, P. H. (1928). A theory of production. The American Economic Review, 18(1), 139-165.
  • Deng, J. L. (1982). Control problems of grey systems. Sys. & Contr. Lett., 1(5), 288-294.
  • Godin, A., Kinsella, S. (2013). Production functions at the business end: the case of the European Fiscal Compact. Global & Local Economic Review, 17(1), 153.
  • Honghong, L. (2010, November). A prediction and influence factor analysis of China's food production. In Information Management, Innovation Management and Industrial Engineering (ICIII), 2010 International Conference on (Vol. 2, pp. 30-33). IEEE.
  • Lucas Jr, R. E. (1988). On the mechanics of economic development. Journal of monetary economics, 22(1), 3-42.
  • Mahaboob, B., Venkateswarlu, B., Balasiddamuni, P. (2017). Estimation of parameters of generalized Cobb-Douglas production functional model, IJPT, 9 (1), p.29186.
  • Makridakis, S., Wheelwright, S. C., Hyndman, R. J. (2008). Forecasting methods and applications. John wiley & sons.
  • Mankiw, N. G., Romer, D., Weil, D. N. (1992). A contribution to the empirics of economic growth. The quarterly journal of economics, 107(2), 407-437.
  • Qi, W., Yingsheng, S., Pengfei, J. (2010, December). On the random disturbance term and parameter estimation of CD production function. In Information Science and Engineering (ISISE), 2010 International Symposium on (pp. 51-53). IEEE.
  • Romer, P. M. (1986). Increasing returns and long-run growth. Journal of political economy, 94(5), 1002-1037.
  • Stern, D. I. (2011). Elasticities of substitution and complementarity. Journal of Productivity Analysis, 36(1), 79-89.
  • Thompson, H. (2016). A physical production function for the US economy. Energy Economics, 56, 185-189.
  • Vîlcu, G. E. (2018). On a generalization of a class of production functions. Applied Economics Letters, 25(2), 106-110.
  • Wang, X. (2016). A geometric characterization of homogeneous production models in economics. Filomat, 30(13), 3465-3471.
  • Zhu, S., Wu, Q. J., Wang, Y. (2011, September). Impact of labor force on China's economic growth based on grey metabolic GM (1, 1) model. In Grey Systems and Intelligent Services (GSIS), 2011 IEEE International Conference on (pp. 262-265). IEEE.
There are 17 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Omer Onalan 0000-0001-7768-1666

Hulya Basegmez This is me 0000-0003-3996-3616

Publication Date September 1, 2018
Published in Issue Year 2018

Cite

APA Onalan, O., & Basegmez, H. (2018). PREDICTION OF GROSS DOMESTIC PRODUCT (GDP) BY USING GREY COBB-DOUGLAS PRODUCTION FUNCTION. PressAcademia Procedia, 7(1), 18-23. https://doi.org/10.17261/Pressacademia.2018.850
AMA Onalan O, Basegmez H. PREDICTION OF GROSS DOMESTIC PRODUCT (GDP) BY USING GREY COBB-DOUGLAS PRODUCTION FUNCTION. PAP. September 2018;7(1):18-23. doi:10.17261/Pressacademia.2018.850
Chicago Onalan, Omer, and Hulya Basegmez. “PREDICTION OF GROSS DOMESTIC PRODUCT (GDP) BY USING GREY COBB-DOUGLAS PRODUCTION FUNCTION”. PressAcademia Procedia 7, no. 1 (September 2018): 18-23. https://doi.org/10.17261/Pressacademia.2018.850.
EndNote Onalan O, Basegmez H (September 1, 2018) PREDICTION OF GROSS DOMESTIC PRODUCT (GDP) BY USING GREY COBB-DOUGLAS PRODUCTION FUNCTION. PressAcademia Procedia 7 1 18–23.
IEEE O. Onalan and H. Basegmez, “PREDICTION OF GROSS DOMESTIC PRODUCT (GDP) BY USING GREY COBB-DOUGLAS PRODUCTION FUNCTION”, PAP, vol. 7, no. 1, pp. 18–23, 2018, doi: 10.17261/Pressacademia.2018.850.
ISNAD Onalan, Omer - Basegmez, Hulya. “PREDICTION OF GROSS DOMESTIC PRODUCT (GDP) BY USING GREY COBB-DOUGLAS PRODUCTION FUNCTION”. PressAcademia Procedia 7/1 (September 2018), 18-23. https://doi.org/10.17261/Pressacademia.2018.850.
JAMA Onalan O, Basegmez H. PREDICTION OF GROSS DOMESTIC PRODUCT (GDP) BY USING GREY COBB-DOUGLAS PRODUCTION FUNCTION. PAP. 2018;7:18–23.
MLA Onalan, Omer and Hulya Basegmez. “PREDICTION OF GROSS DOMESTIC PRODUCT (GDP) BY USING GREY COBB-DOUGLAS PRODUCTION FUNCTION”. PressAcademia Procedia, vol. 7, no. 1, 2018, pp. 18-23, doi:10.17261/Pressacademia.2018.850.
Vancouver Onalan O, Basegmez H. PREDICTION OF GROSS DOMESTIC PRODUCT (GDP) BY USING GREY COBB-DOUGLAS PRODUCTION FUNCTION. PAP. 2018;7(1):18-23.

PressAcademia Procedia (PAP) publishes proceedings of conferences, seminars and symposiums. PressAcademia Procedia aims to provide a source for academic researchers, practitioners and policy makers in the area of social and behavioral sciences, and engineering.

PressAcademia Procedia invites academic conferences for publishing their proceedings with a review of editorial board. Since PressAcademia Procedia is an double blind peer-reviewed open-access book, the manuscripts presented in the conferences can easily be reached by numerous researchers. Hence, PressAcademia Procedia increases the value of your conference for your participants. 

PressAcademia Procedia provides an ISBN for each Conference Proceeding Book and a DOI number for each manuscript published in this book.

PressAcademia Procedia is currently indexed by DRJI, J-Gate, International Scientific Indexing, ISRA, Root Indexing, SOBIAD, Scope, EuroPub, Journal Factor Indexing and InfoBase Indexing. 

Please contact to procedia@pressacademia.org for your conference proceedings.