Purpose- The primary purpose of this study is to model Bitcoin price volatility and forecast its future price returns using advanced econometric models such as ARCH and GARCH. The study aims to enhance risk management strategies and support informed investment decisions by addressing the time-varying nature of Bitcoin’s volatility. The research explores the persistence of volatility shocks and the clustering of price movements to provide insights into market dynamics.
Methodology- This research examines daily Bitcoin closing prices over the period from January 2020 to October 2024. The data was preprocessed to ensure reliability, including applying logarithmic transformations to standardize the data and eliminate trends. Stationarity tests, such as the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and KPSS tests, were conducted to confirm the series' stationarity. The ARCH-LM test was utilized to detect volatility clustering which is essential for validating the use of ARCH and GARCH models. Following this, ARIMA models were employed to define mean equations and GARCH models were used to estimate conditional variance and capture volatility dynamics. The dataset was split into training and validation subsets with data from July to October 2024 reserved for validation.
Findings- The findings demonstrate that Bitcoin’s price movements exhibit significant volatility clustering and persistence of shocks which are key characteristics effectively captured by ARCH and GARCH models. These models provide valuable insights into the volatility patterns of Bitcoin, supporting their application in cryptocurrency analysis. Despite their robustness, the models face limitations in precise return forecasting during highly volatile periods, suggesting the need for further refinement or integration with advanced approaches.
Conclusion- The research concludes that ARCH and GARCH models are effective tools for understanding and forecasting Bitcoin’s volatility. The study underscores the importance of acknowledging volatility persistence and clustering effects when analyzing cryptocurrency price behavior. However, it also highlights areas for improvement in econometric modelling by including the exploration of hybrid models and the integration of macroeconomic factors to enhance forecasting accuracy.
Primary Language | English |
---|---|
Subjects | Labor Economics, Microeconomics (Other), Finance, Business Administration |
Journal Section | Articles |
Authors | |
Publication Date | December 31, 2024 |
Submission Date | October 5, 2024 |
Acceptance Date | November 10, 2024 |
Published in Issue | Year 2024 Volume: 20 Issue: 1 |
PressAcademia Procedia (PAP) publishes proceedings of conferences, seminars and symposiums. PressAcademia Procedia aims to provide a source for academic researchers, practitioners and policy makers in the area of social and behavioral sciences, and engineering.
PressAcademia Procedia invites academic conferences for publishing their proceedings with a review of editorial board. Since PressAcademia Procedia is an double blind peer-reviewed open-access book, the manuscripts presented in the conferences can easily be reached by numerous researchers. Hence, PressAcademia Procedia increases the value of your conference for your participants.
PressAcademia Procedia provides an ISBN for each Conference Proceeding Book and a DOI number for each manuscript published in this book.
PressAcademia Procedia is currently indexed by DRJI, J-Gate, International Scientific Indexing, ISRA, Root Indexing, SOBIAD, Scope, EuroPub, Journal Factor Indexing and InfoBase Indexing.
Please contact to contact@pressacademia.org for your conference proceedings.