Research Article
BibTex RIS Cite

Laser Spectroscopic Investigation of the Hyperfine Structure of Atomic Manganese in the Mid-infrared Wavelength Range

Year 2023, , 32 - 37, 20.06.2023
https://doi.org/10.26650/PAR.2023.00004

Abstract

The hyperfine structure of atomic manganese was studied with laser induced fluorescence spectroscopy and optogalvanic spectroscopy using a commercial hollow cathode discharge lamp and a fully automated single mode mid-infrared tunable laser diode system in the wavelength range from 1530~nm to 1610~nm. Five spectral lines has been analysed. Magnetic dipole hyperfine structure constants A for seven levels were determined by fitting the hyperfine structure using Voigt profile functions.
For two levels, the A constants were determined experimentally for the first time. For the other levels, the previously published hyperfine structure constants A could be confirmed and the accuracy of the values could be improved.
When comparing our two new experimental A-constants with calculated A-constants from the literature, which originate from a semi-empirical analysis of the odd parity levels in Mn, large deviations were found. Until now, experimental values were missing for a more precise calculation. Our new values offer the possibility for a future optimisation of the calculation.

References

  • Acar G., Başar Gü., Başar Gö., Öztürk I. K., Kröger S., 2005, PhyS, 71, 245 google scholar
  • Başar Gü., Başar Gö., Acar G., Öztürk I. K., Kröger S., 2003, PhyS, 67, 476 google scholar
  • Blackwell-Whitehead R., Pickering J., Pearse O., 2005, ApJS, 157, 402 google scholar
  • Brodzinski T., Kronfeldt H.D., Kropp J.R., Winkler R., 1987, ZPhyD, 7, 161 google scholar
  • Elantkowska M., Ruczkowski J., Glowacki P., Stefanska D., 2022, JQSRT, 292, 108347 google scholar
  • Faisal M., Windholz L., Kröger S., 2020, JQSRT, 245, 106873 google scholar
  • Glowacki P., Stefanska D., Ruczkowski J., Elantkowska M., 2020a, JQSRT, 253, 107138 google scholar
  • Glowacki P., Stefanska D., Elantkowska M., Ruczkowski J., 2020b, JQSRT, 249, 107013 google scholar
  • Glowacki P., Stefanska D., Ruczkowski J., Elantkowska M., Chomski M., Furmann B., 2022, JQSRT, 287, 108245 google scholar
  • Klose A., Minamisono K., Mantica P.F., 2013, PhRvA, 88, 042701 google scholar
  • Lederer C.M., Shirley V.S., 1978, Tables of Isotopes, 7th ed.; Wiley: New York, US google scholar
  • Lefebvre P.-H., Garnir H.-P., Biemont E., 2003, A&A, 404, 1153 google scholar
  • Melendez J., 1999, MNRAS, 307, 197 google scholar
  • Sobolewski L.M., Windholz L., Kwela J., Drozdowski R., 2019, JQSRT, 237, 106639 google scholar
  • Sobolewski L.M., Windholz L., Kwela J., 2020, JQSRT, 242, 106769 google scholar
  • Windholz, L., Guthöhrlein G.H., 2003, PhST, 105, 55 google scholar
  • Windholz, L., 2016, PhyS, 91, 114003 google scholar
  • Zeiser A., Kröger S., Pooyan-Weis L., Windholz L., Guthöhrlein G.,2022, JQSRT, 290, 108294 google scholar
Year 2023, , 32 - 37, 20.06.2023
https://doi.org/10.26650/PAR.2023.00004

Abstract

References

  • Acar G., Başar Gü., Başar Gö., Öztürk I. K., Kröger S., 2005, PhyS, 71, 245 google scholar
  • Başar Gü., Başar Gö., Acar G., Öztürk I. K., Kröger S., 2003, PhyS, 67, 476 google scholar
  • Blackwell-Whitehead R., Pickering J., Pearse O., 2005, ApJS, 157, 402 google scholar
  • Brodzinski T., Kronfeldt H.D., Kropp J.R., Winkler R., 1987, ZPhyD, 7, 161 google scholar
  • Elantkowska M., Ruczkowski J., Glowacki P., Stefanska D., 2022, JQSRT, 292, 108347 google scholar
  • Faisal M., Windholz L., Kröger S., 2020, JQSRT, 245, 106873 google scholar
  • Glowacki P., Stefanska D., Ruczkowski J., Elantkowska M., 2020a, JQSRT, 253, 107138 google scholar
  • Glowacki P., Stefanska D., Elantkowska M., Ruczkowski J., 2020b, JQSRT, 249, 107013 google scholar
  • Glowacki P., Stefanska D., Ruczkowski J., Elantkowska M., Chomski M., Furmann B., 2022, JQSRT, 287, 108245 google scholar
  • Klose A., Minamisono K., Mantica P.F., 2013, PhRvA, 88, 042701 google scholar
  • Lederer C.M., Shirley V.S., 1978, Tables of Isotopes, 7th ed.; Wiley: New York, US google scholar
  • Lefebvre P.-H., Garnir H.-P., Biemont E., 2003, A&A, 404, 1153 google scholar
  • Melendez J., 1999, MNRAS, 307, 197 google scholar
  • Sobolewski L.M., Windholz L., Kwela J., Drozdowski R., 2019, JQSRT, 237, 106639 google scholar
  • Sobolewski L.M., Windholz L., Kwela J., 2020, JQSRT, 242, 106769 google scholar
  • Windholz, L., Guthöhrlein G.H., 2003, PhST, 105, 55 google scholar
  • Windholz, L., 2016, PhyS, 91, 114003 google scholar
  • Zeiser A., Kröger S., Pooyan-Weis L., Windholz L., Guthöhrlein G.,2022, JQSRT, 290, 108294 google scholar
There are 18 citations in total.

Details

Primary Language English
Subjects General Physics
Journal Section Research Articles
Authors

Sophie Kröger This is me 0000-0003-4991-9176

Laurentius Windholz This is me 0000-0001-6078-6154

Gönül Başar This is me 0000-0002-2428-8163

Publication Date June 20, 2023
Submission Date April 30, 2023
Published in Issue Year 2023

Cite

APA Kröger, S., Windholz, L., & Başar, G. (2023). Laser Spectroscopic Investigation of the Hyperfine Structure of Atomic Manganese in the Mid-infrared Wavelength Range. Physics and Astronomy Reports, 1(1), 32-37. https://doi.org/10.26650/PAR.2023.00004
AMA Kröger S, Windholz L, Başar G. Laser Spectroscopic Investigation of the Hyperfine Structure of Atomic Manganese in the Mid-infrared Wavelength Range. Physics and Astronomy Reports. June 2023;1(1):32-37. doi:10.26650/PAR.2023.00004
Chicago Kröger, Sophie, Laurentius Windholz, and Gönül Başar. “Laser Spectroscopic Investigation of the Hyperfine Structure of Atomic Manganese in the Mid-Infrared Wavelength Range”. Physics and Astronomy Reports 1, no. 1 (June 2023): 32-37. https://doi.org/10.26650/PAR.2023.00004.
EndNote Kröger S, Windholz L, Başar G (June 1, 2023) Laser Spectroscopic Investigation of the Hyperfine Structure of Atomic Manganese in the Mid-infrared Wavelength Range. Physics and Astronomy Reports 1 1 32–37.
IEEE S. Kröger, L. Windholz, and G. Başar, “Laser Spectroscopic Investigation of the Hyperfine Structure of Atomic Manganese in the Mid-infrared Wavelength Range”, Physics and Astronomy Reports, vol. 1, no. 1, pp. 32–37, 2023, doi: 10.26650/PAR.2023.00004.
ISNAD Kröger, Sophie et al. “Laser Spectroscopic Investigation of the Hyperfine Structure of Atomic Manganese in the Mid-Infrared Wavelength Range”. Physics and Astronomy Reports 1/1 (June 2023), 32-37. https://doi.org/10.26650/PAR.2023.00004.
JAMA Kröger S, Windholz L, Başar G. Laser Spectroscopic Investigation of the Hyperfine Structure of Atomic Manganese in the Mid-infrared Wavelength Range. Physics and Astronomy Reports. 2023;1:32–37.
MLA Kröger, Sophie et al. “Laser Spectroscopic Investigation of the Hyperfine Structure of Atomic Manganese in the Mid-Infrared Wavelength Range”. Physics and Astronomy Reports, vol. 1, no. 1, 2023, pp. 32-37, doi:10.26650/PAR.2023.00004.
Vancouver Kröger S, Windholz L, Başar G. Laser Spectroscopic Investigation of the Hyperfine Structure of Atomic Manganese in the Mid-infrared Wavelength Range. Physics and Astronomy Reports. 2023;1(1):32-7.