Research Article
BibTex RIS Cite
Year 2024, , 29 - 36, 11.06.2024
https://doi.org/10.26650/PAR.2024.00004

Abstract

References

  • Aldridge H., Lind A. G., Bomberger C. C., Puzyrev Y., Zide J. M., Pantelides S. T., Law M. E., Jones K. S., 2017, Materials Science in Semiconductor Processing, 62, 171 google scholar
  • Ardali S., Taganov S., Erol A., Tiras E., 2021, Physica E: Low-Dimensional Systems and Nanostructures, 125, 114344 google scholar
  • Balkan N., Çelik H., Vickers A. J., Cankurtaran M., 1995, Physical Review B, 52, 17210 google scholar
  • Coleridge P. T., 1990, Semiconductor Science and Technology, 5, 961 google scholar
  • Dahl D., 2002, Solid State Communications, 124, 825 google scholar
  • Disseix P., Leymarie J., Vasson A., Monier C., Grandjean N., Leroux M., Massies J., 1997, Physical Review B - Condensed Matter and Materials Physics, 55, 2406 google scholar
  • Donmez O., et al., 2014, Semiconductor Science and Technology, 29 google scholar
  • Donmez O., et al., 2020, Semiconductor Science and Technology, 35, 10 google scholar
  • Donmez O., et al., 2021, Semiconductor Science and Technology, 36, 11 google scholar
  • Feng G., Yoshimoto M., Oe K., Chayahara A., Horino Y., 2005, Japanese Journal of Applied Physics, Part 2: Letters, 44, 3 google scholar
  • Joncour M., Charasse M., Burgeat J., 1985, Journal of Applied Physics, 58, 3373 google scholar
  • Kosogov A. O., et al., 1996, Applied Physics Letters, 69, 3072 google scholar
  • Kuphal E., 1984, Journal of Crystal Growth, 67, 441 google scholar
  • Li W., et al., 2019, Journal of Applied Physics, 125 google scholar
  • Lin A., Doty M. F., Bryant G. W., 2019, Phys. Rev. B, 99, 075308 google scholar
  • Maspero R., Sweeney S. J., Florescu M., 2017, Journal of Physics Condensed Matter, 29, 075001 google scholar
  • Matthews J. W., Blakeslee A., 1974, Journal of Crystal Growth, 27, 118 google scholar
  • Muraki K., Fukatsu S., Shiraki Y., Ito R., 1992, Applied Physics Let-ters, 61, 557 google scholar
  • Petropoulos J. P., Zhong Y., Zide J. M., 2011, Applied Physics Letters, 99 google scholar
  • Toyoshima H., Niwa T., Yamazaki J., Okamoto A., 1993, Applied Physics Letters, 63, 821 google scholar
  • Zanato D., Gokden S., Balkan N., Ridley B. K., Schaff W. J., 2004, Semiconductor Science and Technology, 19, 427 google scholar

Effect of Annealing on Electronic Transport in Modulation-doped In0.32Ga0.68As/GaAs Quantum Well Structures

Year 2024, , 29 - 36, 11.06.2024
https://doi.org/10.26650/PAR.2024.00004

Abstract

In this study, electronic transport properties of n-type modulation-doped In0.32Ga0.68As/GaAs quantum well (QW) quasi 2D structures and the effects of post-growth rapid thermal annealing and growth temperature are determined. Electron Hall mobility and carrier concentration of In0.32Ga0.68As/GaAs QW were determined using the Hall effect measurement at a temperature range between 4.2 K and 300 K. While the low-temperature electron mobility has temperature-independent behavior, electron mobility at high-temperatures deteriorates drastically. However, for low-temperature growth samples, electron mobility shows a slight increase at lower temperatures. The effects of annealing and growth temperature on electronic transport properties are investigated and compared in terms of carrier mobility, carried density, effective mass and scattering mechanisms. To determine the dominant scattering mechanisms in the 2D structures of In0.32Ga0.68As/GaAs, temperature-dependent Hall mobility results are fitted using an analytical model, considering all possible scattering mechanisms (interface roughness, alloy disorder, acoustic phonon, polar optical phonon and remote ionized impurity scattering) in the 2D samples. Magnetotransport (MR) measurements were carried out between 4.2 K and 50 K and the effective mass, Fermi level, and 2D carrier density were calculated by analyzing amplitudes of temperature dependence Shubnikov de Haas (SdH) oscillations. Our results indicate that the effects of annealing at 700◦C-600s reduce interface roughness and alloy disorder scattering, thereby enhancing electron mobility. Post-growth thermal annealing improved electron mobility. Also, annealing increases the effect mass and causes a reduction in the electron concentrations of the InGaAs/GaAs QW systems. Additionally, thermal annealing increases the effective electron mass while decreasing electron concentration.

References

  • Aldridge H., Lind A. G., Bomberger C. C., Puzyrev Y., Zide J. M., Pantelides S. T., Law M. E., Jones K. S., 2017, Materials Science in Semiconductor Processing, 62, 171 google scholar
  • Ardali S., Taganov S., Erol A., Tiras E., 2021, Physica E: Low-Dimensional Systems and Nanostructures, 125, 114344 google scholar
  • Balkan N., Çelik H., Vickers A. J., Cankurtaran M., 1995, Physical Review B, 52, 17210 google scholar
  • Coleridge P. T., 1990, Semiconductor Science and Technology, 5, 961 google scholar
  • Dahl D., 2002, Solid State Communications, 124, 825 google scholar
  • Disseix P., Leymarie J., Vasson A., Monier C., Grandjean N., Leroux M., Massies J., 1997, Physical Review B - Condensed Matter and Materials Physics, 55, 2406 google scholar
  • Donmez O., et al., 2014, Semiconductor Science and Technology, 29 google scholar
  • Donmez O., et al., 2020, Semiconductor Science and Technology, 35, 10 google scholar
  • Donmez O., et al., 2021, Semiconductor Science and Technology, 36, 11 google scholar
  • Feng G., Yoshimoto M., Oe K., Chayahara A., Horino Y., 2005, Japanese Journal of Applied Physics, Part 2: Letters, 44, 3 google scholar
  • Joncour M., Charasse M., Burgeat J., 1985, Journal of Applied Physics, 58, 3373 google scholar
  • Kosogov A. O., et al., 1996, Applied Physics Letters, 69, 3072 google scholar
  • Kuphal E., 1984, Journal of Crystal Growth, 67, 441 google scholar
  • Li W., et al., 2019, Journal of Applied Physics, 125 google scholar
  • Lin A., Doty M. F., Bryant G. W., 2019, Phys. Rev. B, 99, 075308 google scholar
  • Maspero R., Sweeney S. J., Florescu M., 2017, Journal of Physics Condensed Matter, 29, 075001 google scholar
  • Matthews J. W., Blakeslee A., 1974, Journal of Crystal Growth, 27, 118 google scholar
  • Muraki K., Fukatsu S., Shiraki Y., Ito R., 1992, Applied Physics Let-ters, 61, 557 google scholar
  • Petropoulos J. P., Zhong Y., Zide J. M., 2011, Applied Physics Letters, 99 google scholar
  • Toyoshima H., Niwa T., Yamazaki J., Okamoto A., 1993, Applied Physics Letters, 63, 821 google scholar
  • Zanato D., Gokden S., Balkan N., Ridley B. K., Schaff W. J., 2004, Semiconductor Science and Technology, 19, 427 google scholar
There are 21 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Research Articles
Authors

Adal Rajhi 0009-0009-1229-6965

Mustafa Aydın 0000-0002-1002-6007

Ömer Dönmez 0000-0002-7635-3991

Fahrettin Sarcan 0000-0002-8860-4321

Ayşe Erol 0000-0003-4196-1791

Publication Date June 11, 2024
Submission Date October 5, 2023
Published in Issue Year 2024

Cite

APA Rajhi, A., Aydın, M., Dönmez, Ö., Sarcan, F., et al. (2024). Effect of Annealing on Electronic Transport in Modulation-doped In0.32Ga0.68As/GaAs Quantum Well Structures. Physics and Astronomy Reports, 2(1), 29-36. https://doi.org/10.26650/PAR.2024.00004
AMA Rajhi A, Aydın M, Dönmez Ö, Sarcan F, Erol A. Effect of Annealing on Electronic Transport in Modulation-doped In0.32Ga0.68As/GaAs Quantum Well Structures. Physics and Astronomy Reports. June 2024;2(1):29-36. doi:10.26650/PAR.2024.00004
Chicago Rajhi, Adal, Mustafa Aydın, Ömer Dönmez, Fahrettin Sarcan, and Ayşe Erol. “Effect of Annealing on Electronic Transport in Modulation-Doped In0.32Ga0.68As/GaAs Quantum Well Structures”. Physics and Astronomy Reports 2, no. 1 (June 2024): 29-36. https://doi.org/10.26650/PAR.2024.00004.
EndNote Rajhi A, Aydın M, Dönmez Ö, Sarcan F, Erol A (June 1, 2024) Effect of Annealing on Electronic Transport in Modulation-doped In0.32Ga0.68As/GaAs Quantum Well Structures. Physics and Astronomy Reports 2 1 29–36.
IEEE A. Rajhi, M. Aydın, Ö. Dönmez, F. Sarcan, and A. Erol, “Effect of Annealing on Electronic Transport in Modulation-doped In0.32Ga0.68As/GaAs Quantum Well Structures”, Physics and Astronomy Reports, vol. 2, no. 1, pp. 29–36, 2024, doi: 10.26650/PAR.2024.00004.
ISNAD Rajhi, Adal et al. “Effect of Annealing on Electronic Transport in Modulation-Doped In0.32Ga0.68As/GaAs Quantum Well Structures”. Physics and Astronomy Reports 2/1 (June 2024), 29-36. https://doi.org/10.26650/PAR.2024.00004.
JAMA Rajhi A, Aydın M, Dönmez Ö, Sarcan F, Erol A. Effect of Annealing on Electronic Transport in Modulation-doped In0.32Ga0.68As/GaAs Quantum Well Structures. Physics and Astronomy Reports. 2024;2:29–36.
MLA Rajhi, Adal et al. “Effect of Annealing on Electronic Transport in Modulation-Doped In0.32Ga0.68As/GaAs Quantum Well Structures”. Physics and Astronomy Reports, vol. 2, no. 1, 2024, pp. 29-36, doi:10.26650/PAR.2024.00004.
Vancouver Rajhi A, Aydın M, Dönmez Ö, Sarcan F, Erol A. Effect of Annealing on Electronic Transport in Modulation-doped In0.32Ga0.68As/GaAs Quantum Well Structures. Physics and Astronomy Reports. 2024;2(1):29-36.