Research Article
BibTex RIS Cite

Combined and alone apoptotic effects of Ankaferd hemostat and silver nanoparticles on chronic myeloid leukemia (CML) cell line K562

Year 2025, Volume: 18 Issue: 2, 330 - 338
https://doi.org/10.31362/patd.1583891

Abstract

Purpose: This study aimed to evaluate the effects of Ankaferd hemostat (ABS; Ankaferd Blood Stopper®) and silver nanoparticles (AgNPs), alone or in combination, on human chronic myeloid leukemia (CML) cells.
Materials and methods: The cytotoxicity of ABS and AgNPs on K562 CML cells was assessed using the XTT assay, measuring cell viability over time and across different doses. The half maximal inhibitory concentration (IC50) was determined at 72 hours. Apoptosis-related gene expression was analyzed by Real-Time PCR, and oxidative stress was assessed by total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI).
Results: AgNPs reduced cell viability at higher doses, with the IC50 for 40 nm AgNPs being 107.8854 ppm at 72 hours. ABS reduced cell viability by 75% even at maximum dose. Significant changes (p<0.05) were observed in bcl-2, caspase-8 and CDK4 in the AgNPs group. In the ABS group, bcl-2, and CDK4 expressions were significantly elevated. The combined treatment increased caspase-8 and caspase-9 expressions, promoting apoptosis. No significant differences were found in TAS-TOS, but all groups showed higher oxidant activity compared to the control, with the combination group exhibiting the highest antioxidant effect.
Conclusion: ABS, a herbal treatment with minimal side effects, and AgNPs, a promising therapeutic agent, both showed potential in inhibiting tumor cells. Their combination enhanced apoptotic effects, warranting further investigation.

References

  • 1. Eden RE, Coviello JM. Chronic Myelogenous Leukemia. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK531459/. Accessed January 16, 2023
  • 2. Hoffmann VS, Baccarani M, Hasford J, et al. The EUTOS population-based registry: incidence and clinical characteristics of 2904 CML patients in 20 European Countries. Leukemia. 2015;29(6):1336-1343. doi:10.1038/leu.2015.73
  • 3. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7-30. doi:10.3322/caac.21387
  • 4. Snyder D. CML Chapter. Cancer Treat Res. 2021;181:97-114. doi:10.1007/978-3-030-78311-2_6
  • 5. Schoepf AM, Gust R. Novel strategies to eradicate resistant cells in chronic myeloid leukemia. Future Med Chem. 2020;12(23):2089-2092. doi:10.4155/fmc-2020-0278
  • 6. Çiftçiler R, Haznedaroglu İC. Ankaferd hemostat: from molecules to medicine. Turk J Med Sci. 2020;50(SI-2):1739-1750. doi:10.3906/sag-1908-161
  • 7. Koçak E, Çelebier M, Haznedaroglu IC, Altınöz S. Analysis of the Antiproliferative Effect of Ankaferd Hemostat on Caco-2 Colon Cancer Cells via LC/MS Shotgun Proteomics Approach. Biomed Res Int. 2019;2019:5268031. doi:10.1155/2019/5268031
  • 8. Koluman A, Akar N, Malkan UY, Haznedaroglu IC. Qualitative/Chemical Analyses of Ankaferd Hemostat and Its Antioxidant Content in Synthetic Gastric Fluids. Biomed Res Int. 2016;2016:8957820. doi:10.1155/2016/8957820
  • 9. Islam MA, Jacob MV, Antunes E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. J Environ Manage. 2021;281:111918. doi:10.1016/j.jenvman.2020.111918
  • 10. Bruna T, Maldonado Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci. 2021;22(13):7202. doi:10.3390/ijms22137202
  • 11. Zhao Q, Sun XY, Wu B, et al. Construction of biomimetic silver nanoparticles in the treatment of lymphoma. Mater Sci Eng C Mater Biol Appl. 2021;119:111648. doi:10.1016/j.msec.2020.111648
  • 12. Dodurga Y, Seçme M, Eroğlu C, et al. Investigation of the effects of a sulfite molecule on human neuroblastoma cells via a novel oncogene URG4/URGCP. Life Sci. 2015;143;27-34. doi:10.1016/j.lfs.2015.10.005
  • 13. Alur İ, Dodurga Y, Seçme M, et al. Anti-tumor effects of bemiparin in HepG2 and MIA PaCa-2 cells. Gene. 2016;585(2):241-246. doi:10.1016/j.gene.2016.03.044
  • 14. Bukeirat M, Sarkar SN, Hu H, Quintana DD, Simpkins JW, Ren X. MiR-34a regulates blood-brain barrier permeability and mitochondrial function by targeting cytochrome c. J Cereb Blood Flow Metab. 2016;36(2):387-392. doi:10.1177/0271678X15606147
  • 15. Pérez MJ, Ponce DP, Aranguiz A, Behrens MI, Quintanilla RA. Mitochondrial permeability transition pore contributes to mitochondrial dysfunction in fibroblasts of patients with sporadic Alzheimer's disease. Redox Biol. 2018;19:290-300. doi:10.1016/j.redox.2018.09.001
  • 16. Wu H, Lin J, Liu P, et al. Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs. Biomaterials. 2016;101:1-9. doi:10.1016/j.biomaterials.2016.05.031
  • 17. Nayak D, Kumari M, Rajachandar S, Ashe S, Thathapudi NC, Nayak B. Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS Production. ACS Appl Mater Interfaces. 2016;8(42):28538-28553. doi:10.1021/acsami.6b11391
  • 18. Albayrak M, Celebi H, Albayrak A, et al. Serious skin reaction associated with imatinib in a patient with chronic myeloid leukemia. Eurasian J Med. 2011;43(3):192-195. doi:10.5152/eajm.2011.42
  • 19. Mumcuoglu M, Akin DF, Ezer U, Akar N. Ankaferd Blood Stopper induces apoptosis and regulates PAR1 and EPCR expression in human leukemia cells. Egypt J Med Hum Gen. 2015;16(1):19-27. doi:10.1016/j.ejmhg.2014.10.001
  • 20. Malkan UY, Haznedaroglu IC. Antineoplastic Effects of Ankaferd Hemostat. Biomed Res Int. 2022;2022:2665903. doi:10.1155/2022/2665903
  • 21. Akalın İ, Okur FV, Haznedaroğlu İC, et al. Acute in Vitro effects of ABS (Ankaferd Hemostat) on the Lymphoid Neoplastic Cells (B-CLL and RAJI Tumor Cell Lines). UHOD. 2014;24(4):253-259. doi:10.4999/uhod.13026
  • 22. Guo D, Zhao Y, Zhang Y, et al. The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J Biomed Nanotechnol. 2014;10(4):669-678. doi:10.1166/jbn.2014.1625
  • 23. Zhou Y, Wang X. Study on synergistic effect of new functionalized Ag nanoparticles for intracellular drug uptake in cancer cells. Nano Biomed Eng. 2010;2(4):208-213. doi:10.5101/nbe.v2i4.p208-213

Ankaferd kanama durdurucu ve gümüş nanopartiküllerin kronik miyeloid lösemi (KML) hücre hattı K562 üzerindeki kombine ve tek başına apoptotik etkileri

Year 2025, Volume: 18 Issue: 2, 330 - 338
https://doi.org/10.31362/patd.1583891

Abstract

Amaç: Bu çalışma, Ankaferd hemostat (ABS; Ankaferd Blood Stopper®) ve gümüş nanopartiküllerinin (AgNP'ler), tek başına veya kombinasyon halinde, insan kronik miyeloid lösemi (KML) hücreleri üzerindeki etkilerini değerlendirmeyi amaçlamıştır.
Gereç ve yöntem: ABS ve AgNP'lerin K562 KML hücreleri üzerindeki sitotoksik etkisi, XTT testi ile değerlendirilmiş ve farklı dozlar ve zaman dilimlerinde hücre canlılığı ölçülmüştür. Yarı maksimal inhibitör konsantrasyonu (IC50) değeri 72 saat sonunda belirlenmiştir. Apoptoz ile ilişkili gen ekspresyonları Real-Time PCR ile analiz edilmiş, oksidatif stres ise total antioksidan durumu (TAS), total oksidan durumu (TOS) ve oksidatif stres indeksi (OSI) kullanılarak değerlendirilmiştir.
Bulgular: AgNP'ler, doz arttıkça hücre canlılığını düşürmüş ve 40 nm AgNP'ler için IC50 değeri 72 saat sonunda 107.8854 ppm olarak bulunmuştur. ABS, maksimum dozda bile hücre canlılığını %75 oranında düşürmüştür. AgNP grubunda bcl-2, kaspaz-8 ve CDK4 ekspresyonlarında anlamlı değişiklikler (p<0,05) gözlemlenmiştir. ABS grubunda ise bcl-2 ve CDK4 ekspresyonları anlamlı şekilde artmıştır. Kombine tedavi, kaspaz-8 ve kaspaz-9 ekspresyonlarını artırarak apoptozu teşvik etmiştir. TAS-TOS arasında anlamlı bir fark bulunmamış, ancak tüm gruplarda kontrol grubuna kıyasla daha yüksek oksidan aktivite gözlemlenmiş, kombinasyon grubunda ise en yüksek antioksidan etki saptanmıştır.
Sonuç: Yan etkileri minimal olan bir bitkisel tedavi olan ABS ve umut verici bir tedavi ajanı olan AgNP'ler, tümör hücrelerini inhibe etme potansiyeli göstermiştir. Kombinasyonları apoptoz üzerindeki etkilerini artırmış ve daha fazla araştırma yapılmasını gerektirmiştir.

References

  • 1. Eden RE, Coviello JM. Chronic Myelogenous Leukemia. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK531459/. Accessed January 16, 2023
  • 2. Hoffmann VS, Baccarani M, Hasford J, et al. The EUTOS population-based registry: incidence and clinical characteristics of 2904 CML patients in 20 European Countries. Leukemia. 2015;29(6):1336-1343. doi:10.1038/leu.2015.73
  • 3. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7-30. doi:10.3322/caac.21387
  • 4. Snyder D. CML Chapter. Cancer Treat Res. 2021;181:97-114. doi:10.1007/978-3-030-78311-2_6
  • 5. Schoepf AM, Gust R. Novel strategies to eradicate resistant cells in chronic myeloid leukemia. Future Med Chem. 2020;12(23):2089-2092. doi:10.4155/fmc-2020-0278
  • 6. Çiftçiler R, Haznedaroglu İC. Ankaferd hemostat: from molecules to medicine. Turk J Med Sci. 2020;50(SI-2):1739-1750. doi:10.3906/sag-1908-161
  • 7. Koçak E, Çelebier M, Haznedaroglu IC, Altınöz S. Analysis of the Antiproliferative Effect of Ankaferd Hemostat on Caco-2 Colon Cancer Cells via LC/MS Shotgun Proteomics Approach. Biomed Res Int. 2019;2019:5268031. doi:10.1155/2019/5268031
  • 8. Koluman A, Akar N, Malkan UY, Haznedaroglu IC. Qualitative/Chemical Analyses of Ankaferd Hemostat and Its Antioxidant Content in Synthetic Gastric Fluids. Biomed Res Int. 2016;2016:8957820. doi:10.1155/2016/8957820
  • 9. Islam MA, Jacob MV, Antunes E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. J Environ Manage. 2021;281:111918. doi:10.1016/j.jenvman.2020.111918
  • 10. Bruna T, Maldonado Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci. 2021;22(13):7202. doi:10.3390/ijms22137202
  • 11. Zhao Q, Sun XY, Wu B, et al. Construction of biomimetic silver nanoparticles in the treatment of lymphoma. Mater Sci Eng C Mater Biol Appl. 2021;119:111648. doi:10.1016/j.msec.2020.111648
  • 12. Dodurga Y, Seçme M, Eroğlu C, et al. Investigation of the effects of a sulfite molecule on human neuroblastoma cells via a novel oncogene URG4/URGCP. Life Sci. 2015;143;27-34. doi:10.1016/j.lfs.2015.10.005
  • 13. Alur İ, Dodurga Y, Seçme M, et al. Anti-tumor effects of bemiparin in HepG2 and MIA PaCa-2 cells. Gene. 2016;585(2):241-246. doi:10.1016/j.gene.2016.03.044
  • 14. Bukeirat M, Sarkar SN, Hu H, Quintana DD, Simpkins JW, Ren X. MiR-34a regulates blood-brain barrier permeability and mitochondrial function by targeting cytochrome c. J Cereb Blood Flow Metab. 2016;36(2):387-392. doi:10.1177/0271678X15606147
  • 15. Pérez MJ, Ponce DP, Aranguiz A, Behrens MI, Quintanilla RA. Mitochondrial permeability transition pore contributes to mitochondrial dysfunction in fibroblasts of patients with sporadic Alzheimer's disease. Redox Biol. 2018;19:290-300. doi:10.1016/j.redox.2018.09.001
  • 16. Wu H, Lin J, Liu P, et al. Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs. Biomaterials. 2016;101:1-9. doi:10.1016/j.biomaterials.2016.05.031
  • 17. Nayak D, Kumari M, Rajachandar S, Ashe S, Thathapudi NC, Nayak B. Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS Production. ACS Appl Mater Interfaces. 2016;8(42):28538-28553. doi:10.1021/acsami.6b11391
  • 18. Albayrak M, Celebi H, Albayrak A, et al. Serious skin reaction associated with imatinib in a patient with chronic myeloid leukemia. Eurasian J Med. 2011;43(3):192-195. doi:10.5152/eajm.2011.42
  • 19. Mumcuoglu M, Akin DF, Ezer U, Akar N. Ankaferd Blood Stopper induces apoptosis and regulates PAR1 and EPCR expression in human leukemia cells. Egypt J Med Hum Gen. 2015;16(1):19-27. doi:10.1016/j.ejmhg.2014.10.001
  • 20. Malkan UY, Haznedaroglu IC. Antineoplastic Effects of Ankaferd Hemostat. Biomed Res Int. 2022;2022:2665903. doi:10.1155/2022/2665903
  • 21. Akalın İ, Okur FV, Haznedaroğlu İC, et al. Acute in Vitro effects of ABS (Ankaferd Hemostat) on the Lymphoid Neoplastic Cells (B-CLL and RAJI Tumor Cell Lines). UHOD. 2014;24(4):253-259. doi:10.4999/uhod.13026
  • 22. Guo D, Zhao Y, Zhang Y, et al. The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J Biomed Nanotechnol. 2014;10(4):669-678. doi:10.1166/jbn.2014.1625
  • 23. Zhou Y, Wang X. Study on synergistic effect of new functionalized Ag nanoparticles for intracellular drug uptake in cancer cells. Nano Biomed Eng. 2010;2(4):208-213. doi:10.5101/nbe.v2i4.p208-213
There are 23 citations in total.

Details

Primary Language English
Subjects Haematology
Journal Section Research Article
Authors

Başak Ünver Koluman 0000-0003-1106-5021

Mücahit Seçme 0000-0002-2084-760X

Yavuz Dodurga 0000-0002-4936-5954

Early Pub Date March 13, 2025
Publication Date
Submission Date November 12, 2024
Acceptance Date March 13, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

AMA Ünver Koluman B, Seçme M, Dodurga Y. Combined and alone apoptotic effects of Ankaferd hemostat and silver nanoparticles on chronic myeloid leukemia (CML) cell line K562. Pam Med J. March 2025;18(2):330-338. doi:10.31362/patd.1583891

Creative Commons Lisansı
Pamukkale Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License