Evaluating the Antioxidant Capacity of Rheum Ribes via Cupric Reducing Antioxidant Capacity, Ferric Reducing Antioxidant Power and 2,2-Diphenyl-1- picrylhydrazyl Methods
Year 2024,
Volume: 4 Issue: 1, 14 - 18, 17.01.2024
Semih Özli
,
Onur Senol
,
Esen Sezen Karaoğlan
Abstract
Objective: It was aimed at determining the antioxidant capacity of the above-ground parts of the Rheum ribes species, known as “Iskın,” which grows in the high parts of Erzurum province, using different methods.
Methods: Methanol extracts have been prepared to determine the antioxidant capacity of the Rheum ribes plant. The samples were then analyzed with cupric reducing antioxidant capacity, ferric reducing antioxidant power, 2,2-diphenyl-1-picrylhydrazyl radicals. As a reference sample, gallic acid compounds were reacted with the same radicals in different concentrations. The reference sample was determined for equivalent antioxidant capacity methanol extracts.
Results: Gallic acid was used as a reference standard along with the in vitro capacity measurements. The working range was determined where the absorbance graph was linear, and the calibration curves were plotted. The “Iskın” sample was then measured using the same workflow, with 6 consecutive samples. The antioxidant capacity of rhubarb samples was calculated in terms of gallic acid equivalent µg/mL.
Conclusion: In the study, the antioxidant capacity of rhubarb plant was determined using different methods. The response of the rhubarb plant against triphenyltetrazolinechloride, neocuproin, diphenyl picryl hydrazine radicals was determined by spectrophotometric measurements, and the findings were compared with the reference gallic acid sample. According to the results, it was determined that this endemic plant exhibited a very high antioxidant capacity. For this reason, it is thought that crop planting for this wild plant may lead to a remarkable contribution to the industry of the local region and may be used in the cosmetic and drug industries.
Ethical Statement
Ethical approval and informed consent are not required in our study as no research was conducted on human or animal specimens.
Supporting Institution
The authors declared that they received no financial support for this study.
References
- 1. Codoñer-Franch P, Valls-Bellés V, Arilla-Codoñer A, Alonso-Iglesias E. Oxidant mechanisms in childhood obesity: the link between inflammation and oxidative stress. Transl Res. 2011;158(6):369-384.
- 2. Doğmuş D, Durucasu İ. Keten tohumu çeşitlerinin n-bütanol fraksiyonlarının fenolik bileşenlerinin antioksidan aktivitesi - Antıoxıdant actıvıty of phenolıc components from n-butanol fractıon of flaxseed varıetıes. Celal Bayar Univ Fen Bilimleri Derg. 2013;9(1):47-56.
- 3. Güner S, Zengin G, Aktümsek A. Acanthus hirsutus ‘un aseton özütünün antioksidan özelliklerinin araştirilmasi. Selçuk Univ Fen Fak Fen Derg. 2014;38:1-9.
- 4. Güzel E, Boğa R, Bursal E. Çiriş Otunun (Asphodelus Aestivus) antioksidan aktivitesinin belirlenmesi. Muş Alparslan Univ Fen Bilimleri Derg. 2013;1(1):17-25.
- 5. Vendemiale G, Grattagliano I, Altomare E. An update on the role of free radicals and antioxidant defense in human disease. Int J Clin Lab Res. 1999;29(2):49-55. [CrossRef]
- 6. Sahnoun Z, Jamoussi K, Zeghal KM. Free radicals: fundamental notions and methods of exploration. Therapie. 1997;52(4):251-270.
- 7. Bunker VW. Free radicals, antioxidants and ageing. Med Lab Sci. 1992;49(4):299-312.
- 8. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford: Oxford University; 2015.
- 9. Yılmaz İ. Antioksidan içeren bazı gıdalar ve oksidatif stres. J Turgut Ozal Med Cent. 2010;17(2):143-153.
- 10. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933-956. [CrossRef]
- 11. Çetinyürek F. Buğday Ruşeymi ve Buğday Ruşeym Yağının Antioksidan Parametrelerinin Incelenmesi [Tez]. Adnan Menderes Üniversitesi; 2012.
- 12. Keser S, Keser F, Karatepe M, et al. Bioactive contents, in vitro antiradical, antimicrobial and cytotoxic properties of rhubarb (Rheum Ribes L.) extracts. Nat Prod Res. 2020;34(23):3353-3357.
- 13. Atasoy N. Van bölgesinde Yetişen endemik Bitkilerde pro-vitamin A(- Karoten) Tayini. Yüzüncü Yıl Univ Fen Bilimleri Enstitüsü Derg. 2010;15(2):134-142.
- 14. Kırbağ S, Zengin F. Elazığ yöresindeki bazı tıbbi bitkilerin antimikrobiyal aktiviteleri. Tarım Bilimleri Derg. 2006;16(2):77-80.
- 15. Kahraman A, Serteser M, Köken T. Flavonoidler. Kocatepe Tıp Derg. 2002;3:01-08.
- 16. Öztürk M, Aydoǧmuş-Öztürk F, Duru ME, Topçu G. Antioxidant activity of stem and root extracts of Rhubarb (Rheum Ribes): an edible medicinal plant. Food Chem. 2007;103(2):623-630.
- 17. Tolga OO, Varlibaş H, Öz M, Deniz İ. Antioksidan analiz Yöntemleri ve doğu Karadeniz bölgesinde antioksidan kaynağı olarak Kullanılabilecek odun dışı bazı bitkisel Ürünler. Kastamonu Univ Orman Fak Derg. 2013;13(1):48-59.
- 18. Xue Y, Zheng Y, Zhang L, Wu W, Yu D, Liu Y. Theoretical study on the antioxidant properties of 2′- hydroxychalcones: H-atom vs. electron transfer mechanism. J Mol Model. 2013;19(9):3851-3862.
- 19. ÇakatayU, Kayalı R. Serbest Radikal Biyokimyasının tarihsel Süreçteki Gelişimi. Cerrahpaşa Tıp Derg. 2014;37(4):162-167.
- 20. Alaadin AM, Al-Khateeb EH, Jäger AK. Antibacterial activity of the Iraqi Rheum ribes. Root. Pharm Biol. 2007;45(9):688-690.
- 21. Naqishbandi AM, Josefsen K, Pedersen ME, Jäger AK. Hypoglycemic activity of Iraqi Rheum ribes root extract. Pharm Biol. 2009;47(5):380- 383.
- 22. Ceylan S, Cetin S, Camadan Y, Saral O, Ozsen O, Tutus A. Antibacterial and antioxidant activities of traditional medicinal plants from the Erzurum region of Turkey. Ir J Med Sci. 2019;188(4):1303-1309.
Evaluating the Antioxidant Capacity of Rheum Ribes via Cupric Reducing Antioxidant Capacity, Ferric Reducing Antioxidant Power and 2,2-Diphenyl-1- picrylhydrazyl Methods
Year 2024,
Volume: 4 Issue: 1, 14 - 18, 17.01.2024
Semih Özli
,
Onur Senol
,
Esen Sezen Karaoğlan
Abstract
Objective: It was aimed at determining the antioxidant capacity of the above-ground parts of the Rheum ribes species, known as “Iskın,” which grows in the high parts of Erzurum province, using different methods.
Methods: Methanol extracts have been prepared to determine the antioxidant capacity of the Rheum ribes plant. The samples were then analyzed with cupric reducing antioxidant capacity, ferric reducing antioxidant power, 2,2-diphenyl-1-picrylhydrazyl radicals. As a reference sample, gallic acid compounds were reacted with the same radicals in different concentrations. The reference sample was determined for equivalent antioxidant capacity methanol extracts.
Results: Gallic acid was used as a reference standard along with the in vitro capacity measurements. The working range was determined where the absorbance graph was linear, and the calibration curves were plotted. The “Iskın” sample was then measured using the same workflow, with 6 consecutive samples. The antioxidant capacity of rhubarb samples was calculated in terms of gallic acid equivalent µg/mL.
Conclusion: In the study, the antioxidant capacity of rhubarb plant was determined using different methods. The response of the rhubarb plant against triphenyltetrazolinechloride, neocuproin, diphenyl picryl hydrazine radicals was determined by spectrophotometric measurements, and the findings were compared with the reference gallic acid sample. According to the results, it was determined that this endemic plant exhibited a very high antioxidant capacity. For this reason, it is thought that crop planting for this wild plant may lead to a remarkable contribution to the industry of the local region and may be used in the cosmetic and drug industries.
Ethical Statement
Ethical approval and informed consent are not required in our study as no research was conducted on human or animal specimens.
Supporting Institution
The authors declared that they received no financial support for this study
References
- 1. Codoñer-Franch P, Valls-Bellés V, Arilla-Codoñer A, Alonso-Iglesias E. Oxidant mechanisms in childhood obesity: the link between inflammation and oxidative stress. Transl Res. 2011;158(6):369-384.
- 2. Doğmuş D, Durucasu İ. Keten tohumu çeşitlerinin n-bütanol fraksiyonlarının fenolik bileşenlerinin antioksidan aktivitesi - Antıoxıdant actıvıty of phenolıc components from n-butanol fractıon of flaxseed varıetıes. Celal Bayar Univ Fen Bilimleri Derg. 2013;9(1):47-56.
- 3. Güner S, Zengin G, Aktümsek A. Acanthus hirsutus ‘un aseton özütünün antioksidan özelliklerinin araştirilmasi. Selçuk Univ Fen Fak Fen Derg. 2014;38:1-9.
- 4. Güzel E, Boğa R, Bursal E. Çiriş Otunun (Asphodelus Aestivus) antioksidan aktivitesinin belirlenmesi. Muş Alparslan Univ Fen Bilimleri Derg. 2013;1(1):17-25.
- 5. Vendemiale G, Grattagliano I, Altomare E. An update on the role of free radicals and antioxidant defense in human disease. Int J Clin Lab Res. 1999;29(2):49-55. [CrossRef]
- 6. Sahnoun Z, Jamoussi K, Zeghal KM. Free radicals: fundamental notions and methods of exploration. Therapie. 1997;52(4):251-270.
- 7. Bunker VW. Free radicals, antioxidants and ageing. Med Lab Sci. 1992;49(4):299-312.
- 8. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford: Oxford University; 2015.
- 9. Yılmaz İ. Antioksidan içeren bazı gıdalar ve oksidatif stres. J Turgut Ozal Med Cent. 2010;17(2):143-153.
- 10. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933-956. [CrossRef]
- 11. Çetinyürek F. Buğday Ruşeymi ve Buğday Ruşeym Yağının Antioksidan Parametrelerinin Incelenmesi [Tez]. Adnan Menderes Üniversitesi; 2012.
- 12. Keser S, Keser F, Karatepe M, et al. Bioactive contents, in vitro antiradical, antimicrobial and cytotoxic properties of rhubarb (Rheum Ribes L.) extracts. Nat Prod Res. 2020;34(23):3353-3357.
- 13. Atasoy N. Van bölgesinde Yetişen endemik Bitkilerde pro-vitamin A(- Karoten) Tayini. Yüzüncü Yıl Univ Fen Bilimleri Enstitüsü Derg. 2010;15(2):134-142.
- 14. Kırbağ S, Zengin F. Elazığ yöresindeki bazı tıbbi bitkilerin antimikrobiyal aktiviteleri. Tarım Bilimleri Derg. 2006;16(2):77-80.
- 15. Kahraman A, Serteser M, Köken T. Flavonoidler. Kocatepe Tıp Derg. 2002;3:01-08.
- 16. Öztürk M, Aydoǧmuş-Öztürk F, Duru ME, Topçu G. Antioxidant activity of stem and root extracts of Rhubarb (Rheum Ribes): an edible medicinal plant. Food Chem. 2007;103(2):623-630.
- 17. Tolga OO, Varlibaş H, Öz M, Deniz İ. Antioksidan analiz Yöntemleri ve doğu Karadeniz bölgesinde antioksidan kaynağı olarak Kullanılabilecek odun dışı bazı bitkisel Ürünler. Kastamonu Univ Orman Fak Derg. 2013;13(1):48-59.
- 18. Xue Y, Zheng Y, Zhang L, Wu W, Yu D, Liu Y. Theoretical study on the antioxidant properties of 2′- hydroxychalcones: H-atom vs. electron transfer mechanism. J Mol Model. 2013;19(9):3851-3862.
- 19. ÇakatayU, Kayalı R. Serbest Radikal Biyokimyasının tarihsel Süreçteki Gelişimi. Cerrahpaşa Tıp Derg. 2014;37(4):162-167.
- 20. Alaadin AM, Al-Khateeb EH, Jäger AK. Antibacterial activity of the Iraqi Rheum ribes. Root. Pharm Biol. 2007;45(9):688-690.
- 21. Naqishbandi AM, Josefsen K, Pedersen ME, Jäger AK. Hypoglycemic activity of Iraqi Rheum ribes root extract. Pharm Biol. 2009;47(5):380- 383.
- 22. Ceylan S, Cetin S, Camadan Y, Saral O, Ozsen O, Tutus A. Antibacterial and antioxidant activities of traditional medicinal plants from the Erzurum region of Turkey. Ir J Med Sci. 2019;188(4):1303-1309.