Research Article
BibTex RIS Cite
Year 2025, Volume: 5 Issue: 1, 16 - 21, 16.03.2025
https://doi.org/10.62425/pharmata.1549830

Abstract

Ethical Statement

Ethical approval and informed consent are not required in our study as no research was conducted on human or animal specimens.

Supporting Institution

-

Thanks

We would like to thank Prof. Dr. Şükrü Beydemir and Assoc. Prof. Dr. Cüneyt TÜRKEŞ for their support in Molecular Docking studies.

References

  • 1. Akhter S, Zaman HU, Mir S, Dar AM, Silaev SS. Synthesis of schiff base metal complexes: A concise review. Eur. Chem. Bull. 2017;6(10):475-483. [CrossRef]
  • 2. Mishra N, Kumar D. Coordination chemistry of Schiff base tin complexes. Russ. J. Coord. Chem. 2014;40(6):343-357. [CrossRef]
  • 3. Qin W, Long S, Panunzio M, Biondi S. Schiff bases: A short survey on an evergreen chemistry tool. Molecules. 2013;18(10):12264-12289. [CrossRef]
  • 4. Pascal G. Second‐order optical nonlinearities in coordination chemistry: The case of bis (salicylaldiminato) metal Schiff base complexes. Eur. J. Inorg. Chem. 2001;2001(2):339-348. [CrossRef]
  • 5. Kajal A, Bala S, Kamboj S, Sharma N, Saini V. Schiff bases: A versatile pharmacophore. J Catal. 2013;2013:1-14. [CrossRef]
  • 6. Zoubi WA. Biological activities of schiff bases and their complexes: A review of recent works. Int. J. Org. Chem. 2013;3:73-95. [CrossRef]
  • 7. Hameed A, Al-Rashida M, Uroos M, Abid Ali S, Khan KM. Schiff bases in medicinal chemistry: A patent review (2010-2015). Expert Opin. Ther. Pat. 2017;27(1):63-79. [CrossRef]
  • 8. Mahmoud WH, Mohamed GG, El-Dessouky MM. Coordination modes of bidentate lornoxicam drug with some transition metal ions. Synthesis, characterization and in vitro antimicrobial and antibreastic cancer activity studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014;122:598-608. [CrossRef]
  • 9. Hannon MJ. Metal-based anticancer drugs: From a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology. Pure Appl. Chem. 2007;79(12):2243-2261. [CrossRef]
  • 10. Shahraki S. Schiff base compounds as artificial metalloenzymes. Colloids Surf. B: Biointerfaces. 2022;112727. [CrossRef]
  • 11. Mighani H. Schiff Base polymers: synthesis and characterization. J. Polym. Res. 2020;27:1-18. [CrossRef]
  • 12. Maxim C, Pasatoiu T, Kravtsov VC, et. al. Copper (II) and zinc (II) complexes with Schiff-base ligands derived from salicylaldehyde and 3-methoxysalicylaldehyde: Synthesis, crystal structures, magnetic and luminescence properties. Inorganica Chim. Acta. 2008;361(14-15):3903-3911. [CrossRef]
  • 13. Devi J, Yadav M, Kumar D, Naik LS, Jindal DK. Some divalent metal (II) complexes of salicylaldehyde‐derived Schiff bases: Synthesis, spectroscopic characterization, antimicrobial and in vitro anticancer studies. Appl. Organomet. Chem. 2019;33(2):e4693. [CrossRef]
  • 14. Moreira JM, Campos GF, de Campos Pinto LM, et. al. Copper (II) complexes with novel Schiff-based ligands: Synthesis, crystal structure, thermal (TGA–DSC/FT-IR), spectroscopic (FT-IR, UV-Vis) and theoretical studies. J. Therm. Anal. Calorim. 2022;147(6):4087-4098.4. [CrossRef]
  • 15. Ambrozini B, Dockal ER, Cavalheiro ÉTG. Thermal behavior of tetradentate Schiff base chromium (III) complexes. J. Therm. Anal. Calorim. 2014;115(2):979-986. [CrossRef]
  • 16. Kursunlu AN, Guler E, Sevgi F, Ozkalp B. Synthesis, spectroscopic characterization and antimicrobial studies of Co (II), Ni (II), Cu (II) and Zn (II) complexes with Schiff bases derived from 5-bromo-salicylaldehyde. J. Mol. Struct. 2013;1048:476-481. [CrossRef]
  • 17. Asadi M, Torabi S, Mohammadi K. Synthesis, characterization, and thermodynamics of some new unsymmetrical Schiff bases of salicylaldehyde with 3,4-diaminopyridine and their cobalt (III) complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2014;122:676-681. [CrossRef]
  • 18. Hansen PE, Rozwadowski Z, Dziembowska T. NMR studies of hydroxy Schiff bases. Curr. Org. Chem. 2009;13(2):194-215. [CrossRef]
  • 19. Rajimon KJ, Elangovan N, Khairbek AA, Thomas R. Schiff bases from chlorine substituted anilines and salicylaldehyde: Synthesis, characterization, fluorescence, thermal features, biological studies and electronic structure investigations. J. Mol. Liq. 2023;370:121055. [CrossRef]
  • 20. Sheikhshoaie I, Saheb V. A new salen base 5-(phenylazo)-N-(2-amino pyridine) salicyliden Schiff base ligand: Synthesis, experimental and density functional studies on its crystal structure, FTIR, 1H NMR and 13C NMR spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010;77(5):1069-1076. [CrossRef]
  • 21. Maurya RC, Patel P, Rajput S. Synthesis and characterization of N-(o-vanillinidene)-p-anisidine and N,N’-bis(o-vanillinidene)ethylenediamine and their metal complexes. Synth. React. Inorg. Met. Org. Chem. 2003;33(5):817-836. [CrossRef]
  • 22. Anacona J, Santaella J. Synthesis, magnetic and spectroscopic studies of a Schiff base derived from cephaclor and 1,2-diaminobenzene and its transition metal complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013;115:800-804. [CrossRef]
  • 23. Jarząbek B, Kaczmarczyk B, Sek D. Characteristic and spectroscopic properties of the Schiff-base model compounds. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009;74(4):949-954. [CrossRef]
  • 24. Deswal Y, Asija S, Dubey A, et. al. Cobalt (II), Nickel (II), Copper (II) and Zinc (II) complexes of thiadiazole based schiff base ligands: Synthesis, structural characterization, dft, antidiabetic and molecular docking studies. J. Mol. Struct. 2022;1253:132266. [CrossRef]
  • 25. Khan MI, Khan A, Hussain I, et. al. Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes. Inorg. Chem. Commun. 2013;35:104-109. [CrossRef]
  • 26. Shakir M, Hanif S, Sherwani MA, Mohammad O, Al-Resayes SI. Pharmacologically significant complexes of Mn (II), Co (II), Ni (II), Cu (II) and Zn (II) of novel Schiff base ligand,(E)-N-(furan-2-yl methylene) quinolin-8-amine: synthesis, spectral, XRD, SEM, antimicrobial, antioxidant and in vitro cytotoxic studies. J. Mol. Struct. 2015;1092:143-159. [CrossRef]
  • 27. Lolak N, Akocak S, Türkeş C, et. al. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioinorg. Chem., 2020;100:103897. [CrossRef]

Synthesis, Characterization and Docking Studies of a Schiff Base Ligand and Some Metal Complexes

Year 2025, Volume: 5 Issue: 1, 16 - 21, 16.03.2025
https://doi.org/10.62425/pharmata.1549830

Abstract

Objective: To synthesize a Schiff base ligand and some metal complexes, perform characterization studies and elucidate the action mechanisms of the synthesized compounds with the Schrödinger Suite computer aided molecular modeling program.
Methods: A Schiff base ligand has been synthesized by the reaction of a salicylaldehyde derivate with an aminophenol. With using this ligand, metal complexes were prepared from Co(II), Ni(II), Cu(II) and Zn(II) acetate salts. The structures of the synthesized compounds were confirmed by different spectroscopic and microscopic techniques such as Elemental Analysis, FT-IR, 1H-NMR, 13C-NMR, UV-Vis, XRD, SEM and TGA. In order to elucidate the mechanism of action of the synthesized compounds, some descriptive molecular properties were calculated using the Schrödinger Suite computer aided molecular modeling program.
Results: Within the scope of the study, a ligand and its complexes were synthesized. The structures of compounds were elucidated and molecular docking studies showed that Zn(II) complex had the highest scores obtained.
Conclusion: Structural characterization showed that ligand at the metal complexes act as bidentate chelates by binding to the metal ion from the imine nitrogen and phenolic oxygen. The mechanism of action of the synthesized compounds and the active site where the coupling will take place were determined, and the interactions of possible drug molecule candidates synthesized with the target receptor site were calculated.

References

  • 1. Akhter S, Zaman HU, Mir S, Dar AM, Silaev SS. Synthesis of schiff base metal complexes: A concise review. Eur. Chem. Bull. 2017;6(10):475-483. [CrossRef]
  • 2. Mishra N, Kumar D. Coordination chemistry of Schiff base tin complexes. Russ. J. Coord. Chem. 2014;40(6):343-357. [CrossRef]
  • 3. Qin W, Long S, Panunzio M, Biondi S. Schiff bases: A short survey on an evergreen chemistry tool. Molecules. 2013;18(10):12264-12289. [CrossRef]
  • 4. Pascal G. Second‐order optical nonlinearities in coordination chemistry: The case of bis (salicylaldiminato) metal Schiff base complexes. Eur. J. Inorg. Chem. 2001;2001(2):339-348. [CrossRef]
  • 5. Kajal A, Bala S, Kamboj S, Sharma N, Saini V. Schiff bases: A versatile pharmacophore. J Catal. 2013;2013:1-14. [CrossRef]
  • 6. Zoubi WA. Biological activities of schiff bases and their complexes: A review of recent works. Int. J. Org. Chem. 2013;3:73-95. [CrossRef]
  • 7. Hameed A, Al-Rashida M, Uroos M, Abid Ali S, Khan KM. Schiff bases in medicinal chemistry: A patent review (2010-2015). Expert Opin. Ther. Pat. 2017;27(1):63-79. [CrossRef]
  • 8. Mahmoud WH, Mohamed GG, El-Dessouky MM. Coordination modes of bidentate lornoxicam drug with some transition metal ions. Synthesis, characterization and in vitro antimicrobial and antibreastic cancer activity studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014;122:598-608. [CrossRef]
  • 9. Hannon MJ. Metal-based anticancer drugs: From a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology. Pure Appl. Chem. 2007;79(12):2243-2261. [CrossRef]
  • 10. Shahraki S. Schiff base compounds as artificial metalloenzymes. Colloids Surf. B: Biointerfaces. 2022;112727. [CrossRef]
  • 11. Mighani H. Schiff Base polymers: synthesis and characterization. J. Polym. Res. 2020;27:1-18. [CrossRef]
  • 12. Maxim C, Pasatoiu T, Kravtsov VC, et. al. Copper (II) and zinc (II) complexes with Schiff-base ligands derived from salicylaldehyde and 3-methoxysalicylaldehyde: Synthesis, crystal structures, magnetic and luminescence properties. Inorganica Chim. Acta. 2008;361(14-15):3903-3911. [CrossRef]
  • 13. Devi J, Yadav M, Kumar D, Naik LS, Jindal DK. Some divalent metal (II) complexes of salicylaldehyde‐derived Schiff bases: Synthesis, spectroscopic characterization, antimicrobial and in vitro anticancer studies. Appl. Organomet. Chem. 2019;33(2):e4693. [CrossRef]
  • 14. Moreira JM, Campos GF, de Campos Pinto LM, et. al. Copper (II) complexes with novel Schiff-based ligands: Synthesis, crystal structure, thermal (TGA–DSC/FT-IR), spectroscopic (FT-IR, UV-Vis) and theoretical studies. J. Therm. Anal. Calorim. 2022;147(6):4087-4098.4. [CrossRef]
  • 15. Ambrozini B, Dockal ER, Cavalheiro ÉTG. Thermal behavior of tetradentate Schiff base chromium (III) complexes. J. Therm. Anal. Calorim. 2014;115(2):979-986. [CrossRef]
  • 16. Kursunlu AN, Guler E, Sevgi F, Ozkalp B. Synthesis, spectroscopic characterization and antimicrobial studies of Co (II), Ni (II), Cu (II) and Zn (II) complexes with Schiff bases derived from 5-bromo-salicylaldehyde. J. Mol. Struct. 2013;1048:476-481. [CrossRef]
  • 17. Asadi M, Torabi S, Mohammadi K. Synthesis, characterization, and thermodynamics of some new unsymmetrical Schiff bases of salicylaldehyde with 3,4-diaminopyridine and their cobalt (III) complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2014;122:676-681. [CrossRef]
  • 18. Hansen PE, Rozwadowski Z, Dziembowska T. NMR studies of hydroxy Schiff bases. Curr. Org. Chem. 2009;13(2):194-215. [CrossRef]
  • 19. Rajimon KJ, Elangovan N, Khairbek AA, Thomas R. Schiff bases from chlorine substituted anilines and salicylaldehyde: Synthesis, characterization, fluorescence, thermal features, biological studies and electronic structure investigations. J. Mol. Liq. 2023;370:121055. [CrossRef]
  • 20. Sheikhshoaie I, Saheb V. A new salen base 5-(phenylazo)-N-(2-amino pyridine) salicyliden Schiff base ligand: Synthesis, experimental and density functional studies on its crystal structure, FTIR, 1H NMR and 13C NMR spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010;77(5):1069-1076. [CrossRef]
  • 21. Maurya RC, Patel P, Rajput S. Synthesis and characterization of N-(o-vanillinidene)-p-anisidine and N,N’-bis(o-vanillinidene)ethylenediamine and their metal complexes. Synth. React. Inorg. Met. Org. Chem. 2003;33(5):817-836. [CrossRef]
  • 22. Anacona J, Santaella J. Synthesis, magnetic and spectroscopic studies of a Schiff base derived from cephaclor and 1,2-diaminobenzene and its transition metal complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013;115:800-804. [CrossRef]
  • 23. Jarząbek B, Kaczmarczyk B, Sek D. Characteristic and spectroscopic properties of the Schiff-base model compounds. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009;74(4):949-954. [CrossRef]
  • 24. Deswal Y, Asija S, Dubey A, et. al. Cobalt (II), Nickel (II), Copper (II) and Zinc (II) complexes of thiadiazole based schiff base ligands: Synthesis, structural characterization, dft, antidiabetic and molecular docking studies. J. Mol. Struct. 2022;1253:132266. [CrossRef]
  • 25. Khan MI, Khan A, Hussain I, et. al. Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes. Inorg. Chem. Commun. 2013;35:104-109. [CrossRef]
  • 26. Shakir M, Hanif S, Sherwani MA, Mohammad O, Al-Resayes SI. Pharmacologically significant complexes of Mn (II), Co (II), Ni (II), Cu (II) and Zn (II) of novel Schiff base ligand,(E)-N-(furan-2-yl methylene) quinolin-8-amine: synthesis, spectral, XRD, SEM, antimicrobial, antioxidant and in vitro cytotoxic studies. J. Mol. Struct. 2015;1092:143-159. [CrossRef]
  • 27. Lolak N, Akocak S, Türkeş C, et. al. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioinorg. Chem., 2020;100:103897. [CrossRef]
There are 27 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Articles
Authors

Ferit Oktay This is me 0000-0002-8615-972X

Sümeyra Tuna Yıldırım 0000-0001-5564-9630

Publication Date March 16, 2025
Submission Date September 13, 2024
Acceptance Date October 21, 2024
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

EndNote Oktay F, Tuna Yıldırım S (March 1, 2025) Synthesis, Characterization and Docking Studies of a Schiff Base Ligand and Some Metal Complexes. Pharmata 5 1 16–21.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929