Research Article
BibTex RIS Cite

Investigation of the R260 Rail Steel Behavior at Varying Temperatures by EMI Method

Year 2019, Volume: 22 Issue: 4, 955 - 960, 01.12.2019
https://doi.org/10.2339/politeknik.463956

Abstract

In
recent years, Electromechanical Impedance (EMI) method has been widely used in
structural health monitoring (SHM). In this method, lead zirconate titanate
(PZT) ceramic sensor patch is added to the structure to be monitored for
structural health. Impedance and admittance characteristics are measured using
an impedance analyzer, which forms the reference characteristic in the
evaluation of structural health. It is expected that these characteristics will
not change as long as there is no change in the structure. However, it is known
that these characteristics change in some situations, such as exposure to
external environmental conditions and temperature fluctuations. If the effect
of temperature is not taken into account, it leads to misinterpretations as if
there were faults in the structure. Rails are exposed to changing environmental
conditions continuously. In this study, the behavior of the R260 rail steel at
varying temperatures is investigated using the EMI method. As a result of the
experimental studies, it has been observed that frequency and amplitude change
with decreasing temperature. This change has been interpreted using damage
metrics. 

References

  • 1. Aktan A. E., Helmicki A. J. and Hunt V. J., “Issues in health monitoring for intelligent infrastructure”, Smart Materials and Structures, 7(5): 674-692, (1998).
  • 2. Doebling S. W., Farrar C. R. and Prime, M. B., “A summary review of vibration-based damage identification methods”, The Shock and Vibration Digest, 30(2): 91-105, (1998).
  • 3. Shankar R., “An integrated approach for structural health monitoring”, PhD thesis, Indian Institute of Technology Delhi, (2009).
  • 4. Siebel, T. and Lilov, M., “Experimental investigation on improving electromechanical impedance based damage detection by temperature compensation”, Key Engineering Materials, 569: 1132-1139, (2013).
  • 5. Baptista F. G., Budoya D. E., De Almeida V. A. and Ulson J. A., “An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring”, Sensors (Basel), 14(1): 1208-1227, (2014).
  • 6. Zou, D., Liu, T., Liang, C., Huang, Y., Zhang, F., Du, C., “An experimental investigation on the health monitoring of concrete structures using piezoelectric transducers at various environmental temperatures”, Journal of Intelligent Material Systems and Structures, 26(8): 1028-1034, (2015).
  • 7. Wandowski T., Malinowski P. H. and Ostachowicz W. M., 2016, “Delamination detection in CFRP panels using EMI method with temperature compensation, Composite Structures, 151: 99-107, (2016).
  • 8. Xu G., Xu B., Xu C. and Luo Y., “Temperature effects in the analysis of electromechanical impedance by using spectral element method”, Multidiscipline Modeling in Materials and Structures, 12(1): 119-132, (2016).
  • 9. Haider M. F., Giurgiutiu V., Lin B. and Yu L., “Irreversibility effects in piezoelectric wafer active sensors after exposure to high temperature”, Smart Materials and Structures, 26(9): 095019, (2017).
  • 10. Vishay Micro-Measurements, “Strain Gages and Instrumentation Knowledge base”. http://www.vishaypg.com/micro-measurements/stress-analysis-strain-gages/knowledge-base-list/ and http://www.vishaypg.com/micromeasurements/videos/?video513, (2013).
  • 11. Giurgiutiu V., “Structural health monitoring with piezoelectric wafer active sensors”, Second Edition, Elsevier, U.S.A., (2014).
  • 12. Rabelo, D.S., Steffen, V., Neto, R.M.F. and Lacerda, H.B., “Impedance-based structural health monitoring and statistical method for threshold-level determination applied to 2024-T3 aluminum panels under varying temperature”, Structural Health Monitoring, 16(4), 365-381, (2017).
  • 13. Sepehry, N., Shamshirsaz, M. and Bastani, A., “Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature”, Structural Health Monitoring, 10(6), 573-585, (2010).
  • 14. Sepehry, N., Shamshirsaz, M. and Abdollahi, F., “Temperature variation effect compensation in impedance-based structural health monitoring using neural networks”, Journal of Intelligent Material Systems and Structures, 22(17), 1975-1982, (2011).

R260 Ray Çeliğinin Değişen Sıcaklıklardaki Davranışının EMI Yöntemi ile İncelenmesi

Year 2019, Volume: 22 Issue: 4, 955 - 960, 01.12.2019
https://doi.org/10.2339/politeknik.463956

Abstract

Yapısal
sağlık izleme (SHM)’de son yıllarda Elektromekanik Empedans (EMI) yöntemi
yaygın olarak kullanılmaktadır. Bu yöntemde yapısal sağlığı denetlenecek yapıya
kurşun-zirkonat-titanat (PZT) seramik sensör yaması eklenir. Empedans analizör
kullanılarak empedans ve admittans karakteristikleri ölçülür. Bu ölçümler
yapısal sağlığın değerlendirilmesinde referans karakteristiğini oluşturur. Bu
karakteristiklerin yapıda hata, kusur vb. olmadığı sürece değişmemesi beklenir.
Ancak değişen çevresel koşullar ve sıcaklık dalgalanmaları gibi bazı durumlarda
bu karakteristiklerin değiştiği bilinmektedir. Eğer sıcaklık etkisi dikkate
alınmazsa, yapıda hata, kusur vb. olmadığı halde varmış gibi yanlış yorumlamalara
yol açar. Raylar sürekli olarak değişen çevresel koşullara maruz kalmaktadır.
Bu çalışmada, R260 ray çeliğinin değişen sıcaklıklardaki davranışı EMI yöntemi
kullanılarak incelenmiştir. Yapılan deneysel çalışmaların sonucunda, sıcaklık
azaldıkça frekans ve genliğin değiştiği gözlenmiştir. Bu değişim hasar
metrikleri kullanılarak yorumlanmıştır.

References

  • 1. Aktan A. E., Helmicki A. J. and Hunt V. J., “Issues in health monitoring for intelligent infrastructure”, Smart Materials and Structures, 7(5): 674-692, (1998).
  • 2. Doebling S. W., Farrar C. R. and Prime, M. B., “A summary review of vibration-based damage identification methods”, The Shock and Vibration Digest, 30(2): 91-105, (1998).
  • 3. Shankar R., “An integrated approach for structural health monitoring”, PhD thesis, Indian Institute of Technology Delhi, (2009).
  • 4. Siebel, T. and Lilov, M., “Experimental investigation on improving electromechanical impedance based damage detection by temperature compensation”, Key Engineering Materials, 569: 1132-1139, (2013).
  • 5. Baptista F. G., Budoya D. E., De Almeida V. A. and Ulson J. A., “An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring”, Sensors (Basel), 14(1): 1208-1227, (2014).
  • 6. Zou, D., Liu, T., Liang, C., Huang, Y., Zhang, F., Du, C., “An experimental investigation on the health monitoring of concrete structures using piezoelectric transducers at various environmental temperatures”, Journal of Intelligent Material Systems and Structures, 26(8): 1028-1034, (2015).
  • 7. Wandowski T., Malinowski P. H. and Ostachowicz W. M., 2016, “Delamination detection in CFRP panels using EMI method with temperature compensation, Composite Structures, 151: 99-107, (2016).
  • 8. Xu G., Xu B., Xu C. and Luo Y., “Temperature effects in the analysis of electromechanical impedance by using spectral element method”, Multidiscipline Modeling in Materials and Structures, 12(1): 119-132, (2016).
  • 9. Haider M. F., Giurgiutiu V., Lin B. and Yu L., “Irreversibility effects in piezoelectric wafer active sensors after exposure to high temperature”, Smart Materials and Structures, 26(9): 095019, (2017).
  • 10. Vishay Micro-Measurements, “Strain Gages and Instrumentation Knowledge base”. http://www.vishaypg.com/micro-measurements/stress-analysis-strain-gages/knowledge-base-list/ and http://www.vishaypg.com/micromeasurements/videos/?video513, (2013).
  • 11. Giurgiutiu V., “Structural health monitoring with piezoelectric wafer active sensors”, Second Edition, Elsevier, U.S.A., (2014).
  • 12. Rabelo, D.S., Steffen, V., Neto, R.M.F. and Lacerda, H.B., “Impedance-based structural health monitoring and statistical method for threshold-level determination applied to 2024-T3 aluminum panels under varying temperature”, Structural Health Monitoring, 16(4), 365-381, (2017).
  • 13. Sepehry, N., Shamshirsaz, M. and Bastani, A., “Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature”, Structural Health Monitoring, 10(6), 573-585, (2010).
  • 14. Sepehry, N., Shamshirsaz, M. and Abdollahi, F., “Temperature variation effect compensation in impedance-based structural health monitoring using neural networks”, Journal of Intelligent Material Systems and Structures, 22(17), 1975-1982, (2011).
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mesut Tekkalmaz 0000-0003-3781-0384

Gökhan Haydarlar 0000-0001-7430-8145

Ümit Er 0000-0001-7447-504X

Publication Date December 1, 2019
Submission Date September 26, 2018
Published in Issue Year 2019 Volume: 22 Issue: 4

Cite

APA Tekkalmaz, M., Haydarlar, G., & Er, Ü. (2019). R260 Ray Çeliğinin Değişen Sıcaklıklardaki Davranışının EMI Yöntemi ile İncelenmesi. Politeknik Dergisi, 22(4), 955-960. https://doi.org/10.2339/politeknik.463956
AMA Tekkalmaz M, Haydarlar G, Er Ü. R260 Ray Çeliğinin Değişen Sıcaklıklardaki Davranışının EMI Yöntemi ile İncelenmesi. Politeknik Dergisi. December 2019;22(4):955-960. doi:10.2339/politeknik.463956
Chicago Tekkalmaz, Mesut, Gökhan Haydarlar, and Ümit Er. “R260 Ray Çeliğinin Değişen Sıcaklıklardaki Davranışının EMI Yöntemi Ile İncelenmesi”. Politeknik Dergisi 22, no. 4 (December 2019): 955-60. https://doi.org/10.2339/politeknik.463956.
EndNote Tekkalmaz M, Haydarlar G, Er Ü (December 1, 2019) R260 Ray Çeliğinin Değişen Sıcaklıklardaki Davranışının EMI Yöntemi ile İncelenmesi. Politeknik Dergisi 22 4 955–960.
IEEE M. Tekkalmaz, G. Haydarlar, and Ü. Er, “R260 Ray Çeliğinin Değişen Sıcaklıklardaki Davranışının EMI Yöntemi ile İncelenmesi”, Politeknik Dergisi, vol. 22, no. 4, pp. 955–960, 2019, doi: 10.2339/politeknik.463956.
ISNAD Tekkalmaz, Mesut et al. “R260 Ray Çeliğinin Değişen Sıcaklıklardaki Davranışının EMI Yöntemi Ile İncelenmesi”. Politeknik Dergisi 22/4 (December 2019), 955-960. https://doi.org/10.2339/politeknik.463956.
JAMA Tekkalmaz M, Haydarlar G, Er Ü. R260 Ray Çeliğinin Değişen Sıcaklıklardaki Davranışının EMI Yöntemi ile İncelenmesi. Politeknik Dergisi. 2019;22:955–960.
MLA Tekkalmaz, Mesut et al. “R260 Ray Çeliğinin Değişen Sıcaklıklardaki Davranışının EMI Yöntemi Ile İncelenmesi”. Politeknik Dergisi, vol. 22, no. 4, 2019, pp. 955-60, doi:10.2339/politeknik.463956.
Vancouver Tekkalmaz M, Haydarlar G, Er Ü. R260 Ray Çeliğinin Değişen Sıcaklıklardaki Davranışının EMI Yöntemi ile İncelenmesi. Politeknik Dergisi. 2019;22(4):955-60.