Research Article
BibTex RIS Cite

Östemperleme İşleminin CBN Kesici Takım Gerilmeleri Üzerindeki Etkisinin Nümerik Simülasyonu

Year 2020, Volume: 23 Issue: 1, 37 - 44, 01.03.2020
https://doi.org/10.2339/politeknik.452739

Abstract

Bu çalışmada, östemperleme
işleminin kesici takım gerilmeleri üzerindeki etkisi incelenmiştir. Deneysel
çalışmalardan elde edilen kesme kuvvetleri (esas kesme kuvveti, ilerleme kesme
kuvveti ve pasif kuvvet) ANSYS Workbench programında, kesici takımdaki, talaş
yüzeyi, esas kesici kenar ve yardımcı kesici kenar üzerine 3 boyutlu olarak
uygulanmıştır. Östemperleme sürecinin rolünü vurgulamak için, ilk olarak
Küresel Grafitli Dökme Demir (KGDD) numuneler 900°C de 60 dakika tuz banyosunda
östenitlenmiş, daha sonra 60 dakika boyunca 250°C ve 325°C deki bir tuz
banyosunda ısıl işlem yapılmıştır. Analizler sonunda, kesici takım üzerindeki
eş değer gerilme (vonMises), kayma gerilmesi (Tresca), X, Y ve Z yönlerindeki
normal gerilmeler heaplanmıştır.

References

  • KAYNAKLAR (REFERENCES)
  • [1] Attanasio A., Ceretti E., Rizzuti S., Umbrello D., Micari F., “3D finite element analysis of tool wear in machining”, CIRP Manufacturıng Technology, 57: 61-64, (2008).
  • [2] Köse E., Kurt A., Şeker U., “The effects of the feed rate on the cutting tool stresses in machining of Inconel 718”, J. Mater. Process. Technol., 196: 165-173, (2008).
  • [3] Kim, K.W., Lee W.Y., Sin H.C., “A finite-element analysis of machining with the tool edge considered”, J. Mater. Process. Technol., 86: 45-55, (1999).
  • [4] Duran A., Nalbant M., “Finite element analysis of bending occurring while cutting with high speed steel lathe cutting tools”, Materials and Design, 26: 549-554, (2005).
  • [5] Jaharah A.G., Wahid S.W., Che Hassan C.H., Nuawi M.Z., Mohd Nizam AB Rahman., “The effect of uncoated carbide tool geometries in turning aısı 1045 using finite element analysis”, European Journal of Scientific Research, 2: 271-277, (2009).
  • [6] Dechjarern S., “3D finite element ınvestigations of the ınfluence of tool rake angle on cutting performance”, Asian International Journal of Science and Technology in Production and Manufacturing 1: 149-158, (2008).
  • [7] Yanda H., Jaharah A.G., Che Hassan C. H., Effect of rake and clearance angles on the wear of carbide cutting tool, Engineering e-Transaction, 4: 7-13, (2009).
  • [8] Bareggi, A., O’Donnell, Torrance, A., “Modelling thermal effects in machining by finite element methods”, Proceesings of the 24 th International Manufacturing Conference, Waterford, 263-272, (2007).
  • [9] Ucun İ., Aslantaş K., “Numerical simulation of orthogonal machining process using multilayer and single-layer coated tools”, Int J Adv Manuf Technol, 54:899–910, (2011)
  • [10] Patrascu G., Carutasu G., Using virtual manufacturing simulation in 3D cutting forces prediction, Fascicle of Management and Technological Engineering, VI: 1423-1426, (2007).
  • [11] Zhou J.M., Walter H., Andersson M., Stahl J.E., Effect of chamfer angle on wear of PCBN cutting tool, International Journal of Machine Tools & Manufacture 43: 301-305, (2003).
  • [12] Özel T., The influence of friction models on finite element simulations of machining, International Journal of Machine Tools & Manufacture, 46: 518-530, (2006).
  • [13] Ghani A.K., Choudhury I.A., Husni, “Study of Tool Life, Surface Roughness and Vibration in Machining Nodular Cast Iron with Ceramic Tool”, Journal of Materials Processing Technology, 127: 17-22, (2002).
  • [14] Masuda M., Sato T., Kori T., Chujo, Y., “Cutting performance and wear mechanism of alumina-based ceramic tools when machining austempered ductile iron”, Wear, 174: 147-153, (1994).
  • [15] Aslantaş K., Ucun I., Gök K., “Evaluation of the performance of CBN tools when turning austempered ductile iron material”, Journal of Manufacturing Science and Engineering, 130: 054503-1-054503-5, (2008).
  • [16] Uğuz M., Çakır M.C., “Seramiklerin kesici takım malzemesi olarak kullanılması”, 7. Malzeme Sempozyumu, Denizli, 170-175, (1997).
  • [17] ANSYSWorkbench 11.0 Material Library.

Numeric Simulation of Effect on The CBN Cutting Tool Stresses of Austempering Process

Year 2020, Volume: 23 Issue: 1, 37 - 44, 01.03.2020
https://doi.org/10.2339/politeknik.452739

Abstract

In this study, we were investigated
the effect of austempering process on the cutting tool stresses. The cutting
forces obtained from experimental studies (main cutting force, feed force and
passive force) were applied to rake face, main cutting edge, auxiliary cutting
edge on the cutting tool as three dimensional in the ANSYS Workbench program.
To emphasize the role of the austempering process, Ductile Iron (DI) specimens
were firstly austenitized in salt bath at 900°C for 60 min, after which they
were quenched in a salt bath at 250°C and 325°C for 60 min. The equivalent
stress (von-Mises), shear stress (Tresca), normal stresses in the X, Y and Z
directions on the cutting tool were calculated at the end of the analysis.

References

  • KAYNAKLAR (REFERENCES)
  • [1] Attanasio A., Ceretti E., Rizzuti S., Umbrello D., Micari F., “3D finite element analysis of tool wear in machining”, CIRP Manufacturıng Technology, 57: 61-64, (2008).
  • [2] Köse E., Kurt A., Şeker U., “The effects of the feed rate on the cutting tool stresses in machining of Inconel 718”, J. Mater. Process. Technol., 196: 165-173, (2008).
  • [3] Kim, K.W., Lee W.Y., Sin H.C., “A finite-element analysis of machining with the tool edge considered”, J. Mater. Process. Technol., 86: 45-55, (1999).
  • [4] Duran A., Nalbant M., “Finite element analysis of bending occurring while cutting with high speed steel lathe cutting tools”, Materials and Design, 26: 549-554, (2005).
  • [5] Jaharah A.G., Wahid S.W., Che Hassan C.H., Nuawi M.Z., Mohd Nizam AB Rahman., “The effect of uncoated carbide tool geometries in turning aısı 1045 using finite element analysis”, European Journal of Scientific Research, 2: 271-277, (2009).
  • [6] Dechjarern S., “3D finite element ınvestigations of the ınfluence of tool rake angle on cutting performance”, Asian International Journal of Science and Technology in Production and Manufacturing 1: 149-158, (2008).
  • [7] Yanda H., Jaharah A.G., Che Hassan C. H., Effect of rake and clearance angles on the wear of carbide cutting tool, Engineering e-Transaction, 4: 7-13, (2009).
  • [8] Bareggi, A., O’Donnell, Torrance, A., “Modelling thermal effects in machining by finite element methods”, Proceesings of the 24 th International Manufacturing Conference, Waterford, 263-272, (2007).
  • [9] Ucun İ., Aslantaş K., “Numerical simulation of orthogonal machining process using multilayer and single-layer coated tools”, Int J Adv Manuf Technol, 54:899–910, (2011)
  • [10] Patrascu G., Carutasu G., Using virtual manufacturing simulation in 3D cutting forces prediction, Fascicle of Management and Technological Engineering, VI: 1423-1426, (2007).
  • [11] Zhou J.M., Walter H., Andersson M., Stahl J.E., Effect of chamfer angle on wear of PCBN cutting tool, International Journal of Machine Tools & Manufacture 43: 301-305, (2003).
  • [12] Özel T., The influence of friction models on finite element simulations of machining, International Journal of Machine Tools & Manufacture, 46: 518-530, (2006).
  • [13] Ghani A.K., Choudhury I.A., Husni, “Study of Tool Life, Surface Roughness and Vibration in Machining Nodular Cast Iron with Ceramic Tool”, Journal of Materials Processing Technology, 127: 17-22, (2002).
  • [14] Masuda M., Sato T., Kori T., Chujo, Y., “Cutting performance and wear mechanism of alumina-based ceramic tools when machining austempered ductile iron”, Wear, 174: 147-153, (1994).
  • [15] Aslantaş K., Ucun I., Gök K., “Evaluation of the performance of CBN tools when turning austempered ductile iron material”, Journal of Manufacturing Science and Engineering, 130: 054503-1-054503-5, (2008).
  • [16] Uğuz M., Çakır M.C., “Seramiklerin kesici takım malzemesi olarak kullanılması”, 7. Malzeme Sempozyumu, Denizli, 170-175, (1997).
  • [17] ANSYSWorkbench 11.0 Material Library.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Kadir Gök 0000-0001-5736-1884

Arif Gök 0000-0002-3309-6921

Publication Date March 1, 2020
Submission Date August 10, 2018
Published in Issue Year 2020 Volume: 23 Issue: 1

Cite

APA Gök, K., & Gök, A. (2020). Östemperleme İşleminin CBN Kesici Takım Gerilmeleri Üzerindeki Etkisinin Nümerik Simülasyonu. Politeknik Dergisi, 23(1), 37-44. https://doi.org/10.2339/politeknik.452739
AMA Gök K, Gök A. Östemperleme İşleminin CBN Kesici Takım Gerilmeleri Üzerindeki Etkisinin Nümerik Simülasyonu. Politeknik Dergisi. March 2020;23(1):37-44. doi:10.2339/politeknik.452739
Chicago Gök, Kadir, and Arif Gök. “Östemperleme İşleminin CBN Kesici Takım Gerilmeleri Üzerindeki Etkisinin Nümerik Simülasyonu”. Politeknik Dergisi 23, no. 1 (March 2020): 37-44. https://doi.org/10.2339/politeknik.452739.
EndNote Gök K, Gök A (March 1, 2020) Östemperleme İşleminin CBN Kesici Takım Gerilmeleri Üzerindeki Etkisinin Nümerik Simülasyonu. Politeknik Dergisi 23 1 37–44.
IEEE K. Gök and A. Gök, “Östemperleme İşleminin CBN Kesici Takım Gerilmeleri Üzerindeki Etkisinin Nümerik Simülasyonu”, Politeknik Dergisi, vol. 23, no. 1, pp. 37–44, 2020, doi: 10.2339/politeknik.452739.
ISNAD Gök, Kadir - Gök, Arif. “Östemperleme İşleminin CBN Kesici Takım Gerilmeleri Üzerindeki Etkisinin Nümerik Simülasyonu”. Politeknik Dergisi 23/1 (March 2020), 37-44. https://doi.org/10.2339/politeknik.452739.
JAMA Gök K, Gök A. Östemperleme İşleminin CBN Kesici Takım Gerilmeleri Üzerindeki Etkisinin Nümerik Simülasyonu. Politeknik Dergisi. 2020;23:37–44.
MLA Gök, Kadir and Arif Gök. “Östemperleme İşleminin CBN Kesici Takım Gerilmeleri Üzerindeki Etkisinin Nümerik Simülasyonu”. Politeknik Dergisi, vol. 23, no. 1, 2020, pp. 37-44, doi:10.2339/politeknik.452739.
Vancouver Gök K, Gök A. Östemperleme İşleminin CBN Kesici Takım Gerilmeleri Üzerindeki Etkisinin Nümerik Simülasyonu. Politeknik Dergisi. 2020;23(1):37-44.