Research Article
BibTex RIS Cite

Investigation of Parallel Misalignment Faults of Induction Motor by Using Entropy Analysis

Year 2020, Volume: 23 Issue: 4, 1037 - 1050, 01.12.2020
https://doi.org/10.2339/politeknik.551490

Abstract

Induction
motors are widely used electrical machines in converting electrical energy into
mechanical energy. Common faults ıf induction motors are divided into two
groups as electrical and mechanical faults. Electrical faults consist of stator
faults and rotor faults. Mechanical faults include bearing failures, axial
misalignment and other faults related to the mechanical components of the
motor. Bearing failures has significant share in mechanical faults. One of the
main causes of bearing failures is 
the  misalignment between the
motor and the load. In this paper, the effects of the misalignment problems
between an induction motor and a load are investigated. A star-flexible coupling
was used between the induction motor and the load. The motor was loaded with a
self-excited synchronous generator. Motor-load (synchronous generator)
misalignments were gradually adjusted by a laser coupling alignment tool. At
each alignment level the stator current and vibration signals were recorded.
Current and vibration signals were analyzed in the frequency domain. Then
entropies of current and vibration signals were calculated. The change in the
entropy of current and vibration signals due to misalignment were investigated
experimentally. It has been shown that the misalignment problems can be
analyzed with the change in entropy of stator current and vibration signals.

References

  • [1] H. A. T. S. Nandi, "Fault Diagnosis of Electrical Machines- A Review," 0-7803-5293-9/99 $10.00 0 1999 IEEE.
  • [2] S. Nandi, H. A. Toliyat, and X. Li, "Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review," IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 719-729, 2005.
  • [3] C. Verucchi, J. Bossio, G. Bossio, and G. Acosta, "Misalignment detection in induction motors with flexible coupling by means of estimated torque analysis and MCSA," Mechanical Systems and Signal Processing, vol. 80, pp. 570-581, 2016.
  • [4] T. H. Patel and A. K. Darpe, "Experimental investigations on vibration response of misaligned rotors," Mechanical Systems and Signal Processing, vol. 23, no. 7, pp. 2236-2252, 2009.
  • [5] A. S. S. a. B. S. Prabhu, "Effecs of Coupling Misalignment on Vibration of Rotating Machinery," Journal of Sound and Vibration, vol. 185, no. 4, pp. 655–671, 1995.
  • [6] N. Wang and D. Jiang, "Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental study," Mechanism and Machine Theory, vol. 125, pp. 207-219, 2018.
  • [7] T. H. Patel and A. K. Darpe, "Vibration response of misaligned rotors," Journal of Sound and Vibration, vol. 325, no. 3, pp. 609-628, 2009.
  • [8] S. Li, Y. Li, and B. Sarlioglu, "Rotor Unbalanced Magnetic Force in Flux-switching Permanent Magnet Machines Due to Static and Dynamic Eccentricity," Electric Power Components and Systems, vol. 44, no. 3, pp. 336-342, 2015.
  • [9] A. Bonnett and C. Yung, "Increased Efficiency Versus Increased Reliability," IEEE Industry Applications Magazine, vol. 14, no. 1, pp. 29-36, 2008.
  • [10] A. Luedeking, "Shaft Versus Foot Alignment Tolerances: A Critique of the Various Approaches," ed: Ludeca, Inc, 2008.
  • [11] F. Immovilli, A. Bellini, R. Rubini, and C. Tassoni, "Diagnosis of Bearing Faults in Induction Machines by Vibration or Current Signals: A Critical Comparison," IEEE Transactions on Industry Applications, vol. 46, no. 4, pp. 1350-1359, 2010.
  • [12] A. Simm, Q. Wang, S. Huang, and W. Zhao, "Laser based measurement for the monitoring of shaft misalignment," Measurement, vol. 87, pp. 104-116, 2016.
  • [13] Y.-S. L. a. C.-W. Lee, "Modeling and Vibration Analysis of Misaligned Rotor-Ball Bearing Systems," Journal of Sound and Vibration, vol. 224, no. 1, pp. 17–32, 1999.
  • [14] J.-L. Lin, J. Y.-C. Liu, C.-W. Li, L.-F. Tsai, and H.-Y. Chung, "Motor shaft misalignment detection using multiscale entropy with wavelet denoising," Expert Systems with Applications, vol. 37, no. 10, pp. 7200-7204, 2010.
  • [15] I. REDMOND, "Shaft Misalignment and Vibration- A Model," Saudi Arabian Oil Company, 2002.
  • [16] S. S. Alok Kumar Verma, and M.H. Kolekar, "Shaft Misalignment Detection using Stator Current Monitoring," International Journal of Advanced Computer Research, vol. 3, no. 8, 2013.
  • [17] R. K. Mobley, Maintenance Fundamentals, 2nd Edition ed. (Plant Engineering Maintenance Series). Elsevier Butterworth–Heinemann.
  • [18] S. J. J. Wesley Hines, A. Edmondson, "Effects Of Motor Misalignment On Rotating Machinery," 2015.
  • [19] J. M. B. G. R. B. C. H. D. Angelo, "Angular misalignment in induction motors with fexible couplings," 2009.
  • [20] V. H. a. P. Srinivasan, "Vibration analysis of misaligned shaft –ball bearing system," Indian Journal of Science and Technology, vol. 2, no. 9, 2009.
  • [21] R. R. O. a. T. G. Habetler, "Current-Based Algorithm for Mechanical Fault Detection in Induction Motors with Arbitrary Load Conditions," 2003.
  • [22] D. Camarena-Martinez, M. Valtierra-Rodriguez, J. P. Amezquita-Sanchez, D. Granados-Lieberman, R. J. Romero-Troncoso, and A. Garcia-Perez, "Shannon Entropy andK-Means Method for Automatic Diagnosis of Broken Rotor Bars in Induction Motors Using Vibration Signals," Shock and Vibration, vol. 2016, pp. 1-10, 2016.
  • [23] M. Ojaghi and M. Mohammadi, "Unified Modeling Technique for Axially Uniform and Nonuniform Eccentricity Faults in Three-Phase Squirrel Cage Induction Motors," IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5292-5301, 2018.
  • [24] J. Faiz and S. M. M. Moosavi, "Eccentricity fault detection – From induction machines to DFIG—A review," Renewable and Sustainable Energy Reviews, vol. 55, pp. 169-179, 2016.
  • [25] M. E. H. Benbouzid, "A Review of Induction Motors Signature Analysis as a Medium for Faults Detection," IEEE Transactions on Indusrial Electronics, vol. 47, no. 5, 2000.
  • [26] E. Cabal-Yepez, R. J. Romero-Troncoso, A. Garcia-Perez, and R. A. Osornio-Rios, "Single-parameter fault identification through information entropy analysis at the startup-transient current in induction motors," Electric Power Systems Research, vol. 89, pp. 64-69, 2012.
  • [27] G. Dinçer, "Entropi Kavramının İstatistiksel Bazı Uygulamaları," Master, T.C. Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi İstatistik Anabilim Dalı İstatistik Programı, T.C. Yıldız Teknik Üniversitesi 2005.
  • [28] R. J. R.-T. Eduardo Cabal-Yepez, Arturo Garcia-Perez, Roque A. Osornio-Rios, Ricardo Alvarez-Salas, , "Multiple Fault Detection through Information Entropy Analysis in ASD-fed Induction Motors," IEEE, 2011.
  • [29] S. Pan, T. Han, A. C. C. Tan, and T. R. Lin, "Fault Diagnosis System of Induction Motors Based on Multiscale Entropy and Support Vector Machine with Mutual Information Algorithm," Shock and Vibration, vol. 2016, pp. 1-12, 2016.
  • [30] N. A. T. a. E. B.-T. P.A. Bromiley, "Shannon Entropy, Renyi Entropy, and Information," 2010.

Asenkron Motorlarda Paralel Hizalama Hatalarının Entropi Analizi ile İncelenmesi

Year 2020, Volume: 23 Issue: 4, 1037 - 1050, 01.12.2020
https://doi.org/10.2339/politeknik.551490

Abstract

Asenkron
motorlar elektrik enerjisinin mekanik enerjiye dönüştürülmesinde yaygın olarak
kullanılan elektrik makinalarıdır. Asenkron motorlarda meydana gelen yaygın
arızalar elektriksel ve mekaniksel arızalar olarak iki gruba ayrılır.
Elektriksel arızalar stator arızaları ve rotor arızalarından oluşmaktadır.
Mekaniksel arızalar ise rulman arızaları, eksenel kaçıklık arızaları ve motorun
mekanik aksamı ile ilgili olan diğer arızalardan oluşmaktadır. Mekanik
arızaların önemli bir kısmını rulman arızaları oluşturmaktadır. Rulman
arızalarının ana sebeplerinden bir tanesi kaplin ayarının iyi yapılmaması
ve/veya motor-yük arasındaki hizasızlık sonucu meydana gelen mekanik
problemledir. Bu makalede bir asenkron motor ile yük arasında meydana gelen
hizasızlık probleminin motora etkileri incelendi. Asenkron motor ile yük
arasında bir adet yıldız-esnek kaplin kullanıldı. Kendinden uyartımlı bir
senkron generatör ile yüklendi. Motor-yük (senkron generatör) arasındaki
hizasızlıklar bir lazer kaplin ayar cihazı ile kademeli olarak ayarlandı. Her
kademede motor stator akımı ve titreşim sinyalleri kaydedildi. Akım ve titreşim
sinyalleri frekans domeninde analiz edildi. Daha sonra entropi değerleri
hesaplandı. Hizasızlık problemleriye akım ve titreşim sinyalleri entropi değerinin
değişimi deneysel olarak incelendi. Entropi değerindeki değişim ile hizasızlık
problemlerinin analiz edilebileceği ispat edildi. 


References

  • [1] H. A. T. S. Nandi, "Fault Diagnosis of Electrical Machines- A Review," 0-7803-5293-9/99 $10.00 0 1999 IEEE.
  • [2] S. Nandi, H. A. Toliyat, and X. Li, "Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review," IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 719-729, 2005.
  • [3] C. Verucchi, J. Bossio, G. Bossio, and G. Acosta, "Misalignment detection in induction motors with flexible coupling by means of estimated torque analysis and MCSA," Mechanical Systems and Signal Processing, vol. 80, pp. 570-581, 2016.
  • [4] T. H. Patel and A. K. Darpe, "Experimental investigations on vibration response of misaligned rotors," Mechanical Systems and Signal Processing, vol. 23, no. 7, pp. 2236-2252, 2009.
  • [5] A. S. S. a. B. S. Prabhu, "Effecs of Coupling Misalignment on Vibration of Rotating Machinery," Journal of Sound and Vibration, vol. 185, no. 4, pp. 655–671, 1995.
  • [6] N. Wang and D. Jiang, "Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental study," Mechanism and Machine Theory, vol. 125, pp. 207-219, 2018.
  • [7] T. H. Patel and A. K. Darpe, "Vibration response of misaligned rotors," Journal of Sound and Vibration, vol. 325, no. 3, pp. 609-628, 2009.
  • [8] S. Li, Y. Li, and B. Sarlioglu, "Rotor Unbalanced Magnetic Force in Flux-switching Permanent Magnet Machines Due to Static and Dynamic Eccentricity," Electric Power Components and Systems, vol. 44, no. 3, pp. 336-342, 2015.
  • [9] A. Bonnett and C. Yung, "Increased Efficiency Versus Increased Reliability," IEEE Industry Applications Magazine, vol. 14, no. 1, pp. 29-36, 2008.
  • [10] A. Luedeking, "Shaft Versus Foot Alignment Tolerances: A Critique of the Various Approaches," ed: Ludeca, Inc, 2008.
  • [11] F. Immovilli, A. Bellini, R. Rubini, and C. Tassoni, "Diagnosis of Bearing Faults in Induction Machines by Vibration or Current Signals: A Critical Comparison," IEEE Transactions on Industry Applications, vol. 46, no. 4, pp. 1350-1359, 2010.
  • [12] A. Simm, Q. Wang, S. Huang, and W. Zhao, "Laser based measurement for the monitoring of shaft misalignment," Measurement, vol. 87, pp. 104-116, 2016.
  • [13] Y.-S. L. a. C.-W. Lee, "Modeling and Vibration Analysis of Misaligned Rotor-Ball Bearing Systems," Journal of Sound and Vibration, vol. 224, no. 1, pp. 17–32, 1999.
  • [14] J.-L. Lin, J. Y.-C. Liu, C.-W. Li, L.-F. Tsai, and H.-Y. Chung, "Motor shaft misalignment detection using multiscale entropy with wavelet denoising," Expert Systems with Applications, vol. 37, no. 10, pp. 7200-7204, 2010.
  • [15] I. REDMOND, "Shaft Misalignment and Vibration- A Model," Saudi Arabian Oil Company, 2002.
  • [16] S. S. Alok Kumar Verma, and M.H. Kolekar, "Shaft Misalignment Detection using Stator Current Monitoring," International Journal of Advanced Computer Research, vol. 3, no. 8, 2013.
  • [17] R. K. Mobley, Maintenance Fundamentals, 2nd Edition ed. (Plant Engineering Maintenance Series). Elsevier Butterworth–Heinemann.
  • [18] S. J. J. Wesley Hines, A. Edmondson, "Effects Of Motor Misalignment On Rotating Machinery," 2015.
  • [19] J. M. B. G. R. B. C. H. D. Angelo, "Angular misalignment in induction motors with fexible couplings," 2009.
  • [20] V. H. a. P. Srinivasan, "Vibration analysis of misaligned shaft –ball bearing system," Indian Journal of Science and Technology, vol. 2, no. 9, 2009.
  • [21] R. R. O. a. T. G. Habetler, "Current-Based Algorithm for Mechanical Fault Detection in Induction Motors with Arbitrary Load Conditions," 2003.
  • [22] D. Camarena-Martinez, M. Valtierra-Rodriguez, J. P. Amezquita-Sanchez, D. Granados-Lieberman, R. J. Romero-Troncoso, and A. Garcia-Perez, "Shannon Entropy andK-Means Method for Automatic Diagnosis of Broken Rotor Bars in Induction Motors Using Vibration Signals," Shock and Vibration, vol. 2016, pp. 1-10, 2016.
  • [23] M. Ojaghi and M. Mohammadi, "Unified Modeling Technique for Axially Uniform and Nonuniform Eccentricity Faults in Three-Phase Squirrel Cage Induction Motors," IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5292-5301, 2018.
  • [24] J. Faiz and S. M. M. Moosavi, "Eccentricity fault detection – From induction machines to DFIG—A review," Renewable and Sustainable Energy Reviews, vol. 55, pp. 169-179, 2016.
  • [25] M. E. H. Benbouzid, "A Review of Induction Motors Signature Analysis as a Medium for Faults Detection," IEEE Transactions on Indusrial Electronics, vol. 47, no. 5, 2000.
  • [26] E. Cabal-Yepez, R. J. Romero-Troncoso, A. Garcia-Perez, and R. A. Osornio-Rios, "Single-parameter fault identification through information entropy analysis at the startup-transient current in induction motors," Electric Power Systems Research, vol. 89, pp. 64-69, 2012.
  • [27] G. Dinçer, "Entropi Kavramının İstatistiksel Bazı Uygulamaları," Master, T.C. Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi İstatistik Anabilim Dalı İstatistik Programı, T.C. Yıldız Teknik Üniversitesi 2005.
  • [28] R. J. R.-T. Eduardo Cabal-Yepez, Arturo Garcia-Perez, Roque A. Osornio-Rios, Ricardo Alvarez-Salas, , "Multiple Fault Detection through Information Entropy Analysis in ASD-fed Induction Motors," IEEE, 2011.
  • [29] S. Pan, T. Han, A. C. C. Tan, and T. R. Lin, "Fault Diagnosis System of Induction Motors Based on Multiscale Entropy and Support Vector Machine with Mutual Information Algorithm," Shock and Vibration, vol. 2016, pp. 1-12, 2016.
  • [30] N. A. T. a. E. B.-T. P.A. Bromiley, "Shannon Entropy, Renyi Entropy, and Information," 2010.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Abdurrahman Ünsal 0000-0002-7053-517X

Publication Date December 1, 2020
Submission Date April 9, 2019
Published in Issue Year 2020 Volume: 23 Issue: 4

Cite

APA Ünsal, A. (2020). Asenkron Motorlarda Paralel Hizalama Hatalarının Entropi Analizi ile İncelenmesi. Politeknik Dergisi, 23(4), 1037-1050. https://doi.org/10.2339/politeknik.551490
AMA Ünsal A. Asenkron Motorlarda Paralel Hizalama Hatalarının Entropi Analizi ile İncelenmesi. Politeknik Dergisi. December 2020;23(4):1037-1050. doi:10.2339/politeknik.551490
Chicago Ünsal, Abdurrahman. “Asenkron Motorlarda Paralel Hizalama Hatalarının Entropi Analizi Ile İncelenmesi”. Politeknik Dergisi 23, no. 4 (December 2020): 1037-50. https://doi.org/10.2339/politeknik.551490.
EndNote Ünsal A (December 1, 2020) Asenkron Motorlarda Paralel Hizalama Hatalarının Entropi Analizi ile İncelenmesi. Politeknik Dergisi 23 4 1037–1050.
IEEE A. Ünsal, “Asenkron Motorlarda Paralel Hizalama Hatalarının Entropi Analizi ile İncelenmesi”, Politeknik Dergisi, vol. 23, no. 4, pp. 1037–1050, 2020, doi: 10.2339/politeknik.551490.
ISNAD Ünsal, Abdurrahman. “Asenkron Motorlarda Paralel Hizalama Hatalarının Entropi Analizi Ile İncelenmesi”. Politeknik Dergisi 23/4 (December 2020), 1037-1050. https://doi.org/10.2339/politeknik.551490.
JAMA Ünsal A. Asenkron Motorlarda Paralel Hizalama Hatalarının Entropi Analizi ile İncelenmesi. Politeknik Dergisi. 2020;23:1037–1050.
MLA Ünsal, Abdurrahman. “Asenkron Motorlarda Paralel Hizalama Hatalarının Entropi Analizi Ile İncelenmesi”. Politeknik Dergisi, vol. 23, no. 4, 2020, pp. 1037-50, doi:10.2339/politeknik.551490.
Vancouver Ünsal A. Asenkron Motorlarda Paralel Hizalama Hatalarının Entropi Analizi ile İncelenmesi. Politeknik Dergisi. 2020;23(4):1037-50.