Research Article
BibTex RIS Cite

Optimization of Quadrotor’s Thrust and Torque Coefficients and Simulation with Matlab/Simulink

Year 2020, Volume: 23 Issue: 4, 1197 - 1204, 01.12.2020
https://doi.org/10.2339/politeknik.636950

Abstract

In this study, the thrust forces and torque values
were experimentally measured which determine the quadrotor dynamics majorly and
and optimization was performed on the the quadrotor simulation model. The
electronic speed controller, which regulates the speed of the rotors, is
controlled in the frequencies range from 1100 to 2000 by pulse width modulation
(PWM) method. Thrust force, torque value and rotor speed measurements were
experimentally performed on motor and propeller pair. The regression analyzes
of these parameters were performed according to the rotor speed. Regression
analyzes were performed with linear, quadratic, cubic and constant coefficient
methods. The obtained regression equations were applied to Matlab/Simulink
quadrotor model and the errors in the quadrotor trajectory tracking were
compared. It has been observed that the thrust and torque values obtained from
momentum theorem have high deviation in 2-meter trajectory tracking. It has
been observed that using the quadratic regression method to determine thrust
force and using the cubic regression method to determine torque value minimize
the amount of error in trajectory tracking
.

References

  • Referans1 Chen X., Zhang. M., and Yang Y.-D., “Study of an Intelligent PID Attitude Controller for UAV”, Journal of Nanjing University of Aeronautics & Astronautics, 6, 76-83, 2003.
  • Referans2 Lee D., Kim H. J., and Sastry S., “Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter”, International Journal of Control Automation and Systems, 7(3), 419-428, 2009.
  • Referans3 Nicol C., Macnab C. J. B., and Ramirez-Serrano A., “Robust neural network control of a quadrotor helicopter”, Canadian Conference on Electrical and Computer Engineering, 1, 1233-1237, 2008.
  • Referans4 Santos M., López V., and Morata F., “Intelligent fuzzy controller of a quadrotor”, IEEE International Conference on Intelligent Systems and Knowledge Engineering 141-146, 2010.
  • Referans5 Madani T. and Benallegue A., “Adaptive control via backstepping technique and neural networks of a quadrotor helicopter”, IFAC Proceedings Volumes, 41(1), 6513-6518, 2008.
  • Referans6 Bouabdallah S. “Design and control of quadrotors with application to autonomous flying”, Ph.D Thesis, École. Polytechnique and Federale De Lausanne, Siegwart, Roland, 2007.
  • Referans7 Tomashevich S. and Belyavskyi A., “Passification Based Simple Adaptive Control Of Quadrotor”, IFAC-PapersOnLine, 49(13), 281-286, 2016.
  • Referans8 Shao X., Liu J., and Wang H., “Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator”, Mechanical Systems and Signal Processing, 104, 631-647, 2018.
  • Referans9 Cabecinhas D, Cunha R., and Silvestre C. “A trajectory tracking control law for a quadrotor with slung load”, Automatica, 106, 384-389, 2019.
  • Referans10 Ryll M., Bulthoff H. H., and Giordano P. R., “A Novel Overactuated Quadrotor UAV: Modeling, Control and Experimental Validation”, IEEE Transactions on Control Systems Technology, 23(2), 540-556, 2015.
  • Referans11 T. P. Shenoy, K. Praveen Shenoy, L. Khan, S. Aziz, S. Afran, and K. Kumar, “Design and development of a novel triphibian quadcopter,” International Journal of Engineering & Technology, 7(2.21), 1-4, 2018.
  • Referans12 Oosedo A., Konno A., Matsumoto T., Go K., Masuko K., and Uchiyama M., “Design and attitude control of a quad-rotor tail-sitter vertical takeoff and unmanned aerial vehicle”, Advanced Robotics, 26(3-4), 307-326, 2012.
  • Referans13 Nandakumar G., Srinivasan A., and Thondiyath A., “Theoretical and Experimental Investigations on the Effect of Overlap and Offset on the Design of a Novel Quadrotor Configuration, VOOPS”, Journal of Intelligent & Robotic Systems, 92(3-4), 615-628, 2018.
  • Referans14 Badr S., Mehrez O., and Kabeel A. E., “A novel modification for a quadrotor design,” International Conference on Unmanned Aircraft Systems, 702–710, 2016.
  • Referans15 Leishman, J. G., “Principles of helicopter aerodynamics”, Cambridge Aerospace Series, Cambridge University Press, 2016.
  • Referans16 Ercan Y., “İleri dinamik”, ISBN: 978-605-030-981-2, 2014.

Quadrotor İtme ve Tork Katsayılarının Optimizasyonu ve Matlab/Simulink ile Simülasyonu

Year 2020, Volume: 23 Issue: 4, 1197 - 1204, 01.12.2020
https://doi.org/10.2339/politeknik.636950

Abstract

Bu çalışmada,  quadrotorların dinamiğini büyük ölçüde
belirleyen itme ve tork kuvvetleri deneysel olarak ölçülmüş ve quadrotorun
simülasyon modeli üzerinden optimizasyonu gerçekleştirilmiştir. Motor devrinin
kontrolünde elektronik hız kontrol kartı kullanılmış ve darbe genişlik
modülasyon (DGM) metodu ile 1100-2000 frekans aralığında kontrol edilmiştir.
Motor ve pervane çiftinin itme kuvveti, tork değeri ve devir sayısı ölçümleri
deneysel olarak gerçekleştirilmiştir. Bu deneysel verilerin regresyon analizleri
motor devrine bağlı olarak gerçekleştirilmiştir. Regresyon analizleri doğrusal,
karesel, kübik ve sabit katsayılı metodlar ile gerçekleştirilmiştir. Regresyon
ile elde edilen denklemler Matlab/Simulink’te oluşturulan quadrotor modeline
uygulanmış ve quadrotorun dairesel yörünge takibindeki hatalar kıyaslanmıştır.
Momentum teoreminden elde edilen itme kuvveti ve tork değerlerinin 2 metrelik
yörünge takibinde yüksek hata miktarına sahip olduğu gözlenmiştir. İtme
kuvvetinin belirlenmesinde karesel regresyon yönteminin kullanılması ve tork
değerinin belirlenmesinde kübik regresyon yönteminin kullanılması, yörünge
takibindeki hata miktarını en aza indirdiği gözlenmiştir.  

References

  • Referans1 Chen X., Zhang. M., and Yang Y.-D., “Study of an Intelligent PID Attitude Controller for UAV”, Journal of Nanjing University of Aeronautics & Astronautics, 6, 76-83, 2003.
  • Referans2 Lee D., Kim H. J., and Sastry S., “Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter”, International Journal of Control Automation and Systems, 7(3), 419-428, 2009.
  • Referans3 Nicol C., Macnab C. J. B., and Ramirez-Serrano A., “Robust neural network control of a quadrotor helicopter”, Canadian Conference on Electrical and Computer Engineering, 1, 1233-1237, 2008.
  • Referans4 Santos M., López V., and Morata F., “Intelligent fuzzy controller of a quadrotor”, IEEE International Conference on Intelligent Systems and Knowledge Engineering 141-146, 2010.
  • Referans5 Madani T. and Benallegue A., “Adaptive control via backstepping technique and neural networks of a quadrotor helicopter”, IFAC Proceedings Volumes, 41(1), 6513-6518, 2008.
  • Referans6 Bouabdallah S. “Design and control of quadrotors with application to autonomous flying”, Ph.D Thesis, École. Polytechnique and Federale De Lausanne, Siegwart, Roland, 2007.
  • Referans7 Tomashevich S. and Belyavskyi A., “Passification Based Simple Adaptive Control Of Quadrotor”, IFAC-PapersOnLine, 49(13), 281-286, 2016.
  • Referans8 Shao X., Liu J., and Wang H., “Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator”, Mechanical Systems and Signal Processing, 104, 631-647, 2018.
  • Referans9 Cabecinhas D, Cunha R., and Silvestre C. “A trajectory tracking control law for a quadrotor with slung load”, Automatica, 106, 384-389, 2019.
  • Referans10 Ryll M., Bulthoff H. H., and Giordano P. R., “A Novel Overactuated Quadrotor UAV: Modeling, Control and Experimental Validation”, IEEE Transactions on Control Systems Technology, 23(2), 540-556, 2015.
  • Referans11 T. P. Shenoy, K. Praveen Shenoy, L. Khan, S. Aziz, S. Afran, and K. Kumar, “Design and development of a novel triphibian quadcopter,” International Journal of Engineering & Technology, 7(2.21), 1-4, 2018.
  • Referans12 Oosedo A., Konno A., Matsumoto T., Go K., Masuko K., and Uchiyama M., “Design and attitude control of a quad-rotor tail-sitter vertical takeoff and unmanned aerial vehicle”, Advanced Robotics, 26(3-4), 307-326, 2012.
  • Referans13 Nandakumar G., Srinivasan A., and Thondiyath A., “Theoretical and Experimental Investigations on the Effect of Overlap and Offset on the Design of a Novel Quadrotor Configuration, VOOPS”, Journal of Intelligent & Robotic Systems, 92(3-4), 615-628, 2018.
  • Referans14 Badr S., Mehrez O., and Kabeel A. E., “A novel modification for a quadrotor design,” International Conference on Unmanned Aircraft Systems, 702–710, 2016.
  • Referans15 Leishman, J. G., “Principles of helicopter aerodynamics”, Cambridge Aerospace Series, Cambridge University Press, 2016.
  • Referans16 Ercan Y., “İleri dinamik”, ISBN: 978-605-030-981-2, 2014.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Ömer Bayraktar 0000-0002-9858-5363

Abdulmecit Güldaş 0000-0002-1865-2272

Publication Date December 1, 2020
Submission Date October 23, 2019
Published in Issue Year 2020 Volume: 23 Issue: 4

Cite

APA Bayraktar, Ö., & Güldaş, A. (2020). Quadrotor İtme ve Tork Katsayılarının Optimizasyonu ve Matlab/Simulink ile Simülasyonu. Politeknik Dergisi, 23(4), 1197-1204. https://doi.org/10.2339/politeknik.636950
AMA Bayraktar Ö, Güldaş A. Quadrotor İtme ve Tork Katsayılarının Optimizasyonu ve Matlab/Simulink ile Simülasyonu. Politeknik Dergisi. December 2020;23(4):1197-1204. doi:10.2339/politeknik.636950
Chicago Bayraktar, Ömer, and Abdulmecit Güldaş. “Quadrotor İtme Ve Tork Katsayılarının Optimizasyonu Ve Matlab/Simulink Ile Simülasyonu”. Politeknik Dergisi 23, no. 4 (December 2020): 1197-1204. https://doi.org/10.2339/politeknik.636950.
EndNote Bayraktar Ö, Güldaş A (December 1, 2020) Quadrotor İtme ve Tork Katsayılarının Optimizasyonu ve Matlab/Simulink ile Simülasyonu. Politeknik Dergisi 23 4 1197–1204.
IEEE Ö. Bayraktar and A. Güldaş, “Quadrotor İtme ve Tork Katsayılarının Optimizasyonu ve Matlab/Simulink ile Simülasyonu”, Politeknik Dergisi, vol. 23, no. 4, pp. 1197–1204, 2020, doi: 10.2339/politeknik.636950.
ISNAD Bayraktar, Ömer - Güldaş, Abdulmecit. “Quadrotor İtme Ve Tork Katsayılarının Optimizasyonu Ve Matlab/Simulink Ile Simülasyonu”. Politeknik Dergisi 23/4 (December 2020), 1197-1204. https://doi.org/10.2339/politeknik.636950.
JAMA Bayraktar Ö, Güldaş A. Quadrotor İtme ve Tork Katsayılarının Optimizasyonu ve Matlab/Simulink ile Simülasyonu. Politeknik Dergisi. 2020;23:1197–1204.
MLA Bayraktar, Ömer and Abdulmecit Güldaş. “Quadrotor İtme Ve Tork Katsayılarının Optimizasyonu Ve Matlab/Simulink Ile Simülasyonu”. Politeknik Dergisi, vol. 23, no. 4, 2020, pp. 1197-04, doi:10.2339/politeknik.636950.
Vancouver Bayraktar Ö, Güldaş A. Quadrotor İtme ve Tork Katsayılarının Optimizasyonu ve Matlab/Simulink ile Simülasyonu. Politeknik Dergisi. 2020;23(4):1197-204.