Research Article
BibTex RIS Cite

Comparison of Buckling Loads of Masonry Slender Columns with Rectangular and Circular Cross-Section

Year 2021, Volume: 24 Issue: 1, 131 - 142, 01.03.2021
https://doi.org/10.2339/politeknik.561059

Abstract

This study aims at comparison of buckling loads of masonry slender columns having rectangular and circular cross-section subjected to their own weight and eccentric vertical top load. It has been assumed that the material of the columns is a homogeneous continuum which has no tensile strength and, linear-elastic in compression. For the practical determination of the buckling loads, an effective calculation method existing in the literature has been adopted. For sample square and circular columns, buckling loads have been obtained and the effect of cross-section shape discussed. Finite element model for one of the square columns has been created with the Abaqus program, the buckling load has been determined and compared with the result of the present study’s method. It has been seen that there is a good agreement between the results. Variation of buckling loads of the considered columns depending on the load eccentricity have been determined. Moreover, analytical expressions have been obtained for the variation of buckling loads of the square and circular columns depending on the vertical load eccentricity. 

References

  • Sesigür H., Çelik O.C., Çılı F., “Tarihi Yapılarda Taşıyıcı Bileşenler, Hasar Biçimleri, Onarım ve Güçlendirme”, İMO İstanbul Bülten, 89: 10 – 21, (2007).
  • https://www.hippostcard.com/listing/postal-postcard-000231-nave-de-la-catedral-palma-mallorca/11363576
  • https://tr.pinterest.com/pin/509540145313022658/
  • Chapman J.C., Slatford J., “The Elastic Buckling of Brittle Columns”, Proc Inst Civil Eng, 6, 107 – 25, (1957).
  • Sahlin S., “Structural Masonry”, Englewood Cliffs (NJ). Prentice – Hall, (1971).
  • Yokel F.Y., Stability and Load Capacity of Members With No Tensile Strength. Journal of the Structural Division, (ASCE), 97 (7), 1913 – 1926, (1971).
  • De Falco A., Lucchesi M., “Stability of Columns With No Tension Strength and Bounded Compressive Strength and Deformability”, Part I: Large Eccentricity, International Journal of Solids and Structures, 39 (25), 6191 – 6210, (2002).
  • Cavaleri L., Failla A., La Mendola L. and Papia M., “Experimental and Analytical Response of Masonry Elements under Eccentric Vertical Loads”, Eng Struct, 27 (8), 1175 – 1184, (2005).
  • Sandoval, C., Roca, P., Bernat, E. and Gil, L., “Testing and Numerical Modelling of Buckling Failure of Masonry Walls”, Construction and Building Materials, 25, 4394 – 4402, (2011).
  • Sandoval C., Roca P., “Study of the Influence of Different Parameters on the Buckling Behavior of Masonry Walls”, Construction and Building Materials, 35, 888 – 899, (2012).
  • Ganduscio S., Romano F., “FEM and Analytical Solutions for Buckling of Nonlinear Masonry Members”, Journal of Structural Engineering, ASCE, 123 (1), 104 – 111, (1997).
  • Romano F., Ganduscio S. and Zingone G., “Cracked Nonlinear Masonry Stability Under Vertical and Lateral Loads”, Journal of Structural Engineering, ASCE, 119 (1), 69 – 87, (1993).
  • La Mendola, L. and Papia, M., “Stability of Masonry Piers Under Their Own Weight and Eccentric Load”, Journal of Structural Engineering, ASCE, 119 (6), 1678 – 1693, (1993).
  • La Mendola L., “Influence of Nonlinear Constitutive Law on Masonry Pier Stability”, Journal of Structural Engineering ASCE, 123 (10), 1303 – 1311, (1997).
  • Mura I., “Stability of Nonlinear Masonry Members Under Combined Load”, Computers and Structures, 86, 1579 – 1593, (2008).
  • Frish-Fay R., “Stability of Masonry Piers”, International Journal of Solids and Structures, 11 (2), 187 – 198, (1975).
  • Gurel M.A., “Stability of Slender Masonry Columns with Circular Cross-Section under Their Own Weight and Eccentric Vertical Load”, International Journal of Architectural Heritage, 10 (8), 1008 – 1024, (2016).
  • Broseghini M., Zanetti P., Jefferson A.D., Gei M., “Progressive Instability in Circular Masonry Columns”, Engineering Structures, 157, 96 – 104, (2018).
  • Seames A.E., Conway H.D., “A Numerical Procedure for Calculating the Large Deflections of Straight and Curved Beams”, Journal of Applied Mechanics, Transactions of ASME, 24 (79), 289-294, (1957).
  • Giordano A., Mele E. and De Luca A., “Modelling of Historical Masonry Structures: Comparison of Different Approaches Through A Case Study”, Engineering Structures, 24, 1057 – 1069, (2002).
  • Angelillo M., Lourenço P. B. and Milani G., “Masonry Behaviour and Modelling”, Mechanics of Masonry Structures, CISM International Centre for Mechanical Sciences Courses and Lectures Vol. 551, Springer, (2014).
  • De Falco A., Lucchesi M., “Explicit Solutions for the Stability of No-Tension Beam-Columns”, International Journal of Structural Stability and Dynamics, 3(2), 195-213, (2003).
  • ABAQUS Version 6.14 documentation, (2014).

Dikdörtgen ve Daire Kesitli Yığma Narin Kolonların Burkulma Yüklerinin Karşılaştırılması

Year 2021, Volume: 24 Issue: 1, 131 - 142, 01.03.2021
https://doi.org/10.2339/politeknik.561059

Abstract

Bu çalışma kendi ağırlığı ve dışmerkez düşey tepe yükü etkisinde bulunan dikdörtgen ve daire kesitli yığma narin kolonların burkulma yüklerini karşılaştırmayı amaçlamaktadır. Kolonların malzemesi çekme dayanımı olmayan, basınçta doğrusal-elastik, homojen bir sürekli ortam kabul edilmiştir. Burkulma yüklerinin pratik olarak belirlenmesi için literatürde bulunan etkin bir hesap yöntemi esas alınmıştır. Örnek kare ve dairesel kolonlar için burkulma yükü değerleri elde edilmiş ve bu yük üzerinde kesit şeklinin etkisi irdelenmiştir. Kare kolonlardan birinin Abaqus programıyla sonlu eleman modeli oluşturulup, burkulma yükü belirlenmiş ve çalışmadaki yöntemin sonucuyla karşılaştırılmıştır. Sonuçlar arasında iyi bir uyuşum olduğu görülmüştür. Ele alınan kolonların burkulma yüklerinin yükün dışmerkezliğine bağlı değişimi belirlenmiştir. Ayrıca, kare ve daire kesitli kolonların burkulma yüklerinin dışmerkezliğe bağlı değişimi için analitik ifadeler elde edilmiştir.

References

  • Sesigür H., Çelik O.C., Çılı F., “Tarihi Yapılarda Taşıyıcı Bileşenler, Hasar Biçimleri, Onarım ve Güçlendirme”, İMO İstanbul Bülten, 89: 10 – 21, (2007).
  • https://www.hippostcard.com/listing/postal-postcard-000231-nave-de-la-catedral-palma-mallorca/11363576
  • https://tr.pinterest.com/pin/509540145313022658/
  • Chapman J.C., Slatford J., “The Elastic Buckling of Brittle Columns”, Proc Inst Civil Eng, 6, 107 – 25, (1957).
  • Sahlin S., “Structural Masonry”, Englewood Cliffs (NJ). Prentice – Hall, (1971).
  • Yokel F.Y., Stability and Load Capacity of Members With No Tensile Strength. Journal of the Structural Division, (ASCE), 97 (7), 1913 – 1926, (1971).
  • De Falco A., Lucchesi M., “Stability of Columns With No Tension Strength and Bounded Compressive Strength and Deformability”, Part I: Large Eccentricity, International Journal of Solids and Structures, 39 (25), 6191 – 6210, (2002).
  • Cavaleri L., Failla A., La Mendola L. and Papia M., “Experimental and Analytical Response of Masonry Elements under Eccentric Vertical Loads”, Eng Struct, 27 (8), 1175 – 1184, (2005).
  • Sandoval, C., Roca, P., Bernat, E. and Gil, L., “Testing and Numerical Modelling of Buckling Failure of Masonry Walls”, Construction and Building Materials, 25, 4394 – 4402, (2011).
  • Sandoval C., Roca P., “Study of the Influence of Different Parameters on the Buckling Behavior of Masonry Walls”, Construction and Building Materials, 35, 888 – 899, (2012).
  • Ganduscio S., Romano F., “FEM and Analytical Solutions for Buckling of Nonlinear Masonry Members”, Journal of Structural Engineering, ASCE, 123 (1), 104 – 111, (1997).
  • Romano F., Ganduscio S. and Zingone G., “Cracked Nonlinear Masonry Stability Under Vertical and Lateral Loads”, Journal of Structural Engineering, ASCE, 119 (1), 69 – 87, (1993).
  • La Mendola, L. and Papia, M., “Stability of Masonry Piers Under Their Own Weight and Eccentric Load”, Journal of Structural Engineering, ASCE, 119 (6), 1678 – 1693, (1993).
  • La Mendola L., “Influence of Nonlinear Constitutive Law on Masonry Pier Stability”, Journal of Structural Engineering ASCE, 123 (10), 1303 – 1311, (1997).
  • Mura I., “Stability of Nonlinear Masonry Members Under Combined Load”, Computers and Structures, 86, 1579 – 1593, (2008).
  • Frish-Fay R., “Stability of Masonry Piers”, International Journal of Solids and Structures, 11 (2), 187 – 198, (1975).
  • Gurel M.A., “Stability of Slender Masonry Columns with Circular Cross-Section under Their Own Weight and Eccentric Vertical Load”, International Journal of Architectural Heritage, 10 (8), 1008 – 1024, (2016).
  • Broseghini M., Zanetti P., Jefferson A.D., Gei M., “Progressive Instability in Circular Masonry Columns”, Engineering Structures, 157, 96 – 104, (2018).
  • Seames A.E., Conway H.D., “A Numerical Procedure for Calculating the Large Deflections of Straight and Curved Beams”, Journal of Applied Mechanics, Transactions of ASME, 24 (79), 289-294, (1957).
  • Giordano A., Mele E. and De Luca A., “Modelling of Historical Masonry Structures: Comparison of Different Approaches Through A Case Study”, Engineering Structures, 24, 1057 – 1069, (2002).
  • Angelillo M., Lourenço P. B. and Milani G., “Masonry Behaviour and Modelling”, Mechanics of Masonry Structures, CISM International Centre for Mechanical Sciences Courses and Lectures Vol. 551, Springer, (2014).
  • De Falco A., Lucchesi M., “Explicit Solutions for the Stability of No-Tension Beam-Columns”, International Journal of Structural Stability and Dynamics, 3(2), 195-213, (2003).
  • ABAQUS Version 6.14 documentation, (2014).
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Arif Gürel 0000-0002-1046-4410

Rabia İzol 0000-0002-7568-3817

Beyhan İpekyüz 0000-0001-8088-1896

H. Almıla Arda Büyüktaşkın 0000-0003-3950-9018

Recep Kadir Pekgökgöz 0000-0002-3083-2241

Publication Date March 1, 2021
Submission Date May 6, 2019
Published in Issue Year 2021 Volume: 24 Issue: 1

Cite

APA Gürel, A., İzol, R., İpekyüz, B., Arda Büyüktaşkın, H. A., et al. (2021). Dikdörtgen ve Daire Kesitli Yığma Narin Kolonların Burkulma Yüklerinin Karşılaştırılması. Politeknik Dergisi, 24(1), 131-142. https://doi.org/10.2339/politeknik.561059
AMA Gürel A, İzol R, İpekyüz B, Arda Büyüktaşkın HA, Pekgökgöz RK. Dikdörtgen ve Daire Kesitli Yığma Narin Kolonların Burkulma Yüklerinin Karşılaştırılması. Politeknik Dergisi. March 2021;24(1):131-142. doi:10.2339/politeknik.561059
Chicago Gürel, Arif, Rabia İzol, Beyhan İpekyüz, H. Almıla Arda Büyüktaşkın, and Recep Kadir Pekgökgöz. “Dikdörtgen Ve Daire Kesitli Yığma Narin Kolonların Burkulma Yüklerinin Karşılaştırılması”. Politeknik Dergisi 24, no. 1 (March 2021): 131-42. https://doi.org/10.2339/politeknik.561059.
EndNote Gürel A, İzol R, İpekyüz B, Arda Büyüktaşkın HA, Pekgökgöz RK (March 1, 2021) Dikdörtgen ve Daire Kesitli Yığma Narin Kolonların Burkulma Yüklerinin Karşılaştırılması. Politeknik Dergisi 24 1 131–142.
IEEE A. Gürel, R. İzol, B. İpekyüz, H. A. Arda Büyüktaşkın, and R. K. Pekgökgöz, “Dikdörtgen ve Daire Kesitli Yığma Narin Kolonların Burkulma Yüklerinin Karşılaştırılması”, Politeknik Dergisi, vol. 24, no. 1, pp. 131–142, 2021, doi: 10.2339/politeknik.561059.
ISNAD Gürel, Arif et al. “Dikdörtgen Ve Daire Kesitli Yığma Narin Kolonların Burkulma Yüklerinin Karşılaştırılması”. Politeknik Dergisi 24/1 (March 2021), 131-142. https://doi.org/10.2339/politeknik.561059.
JAMA Gürel A, İzol R, İpekyüz B, Arda Büyüktaşkın HA, Pekgökgöz RK. Dikdörtgen ve Daire Kesitli Yığma Narin Kolonların Burkulma Yüklerinin Karşılaştırılması. Politeknik Dergisi. 2021;24:131–142.
MLA Gürel, Arif et al. “Dikdörtgen Ve Daire Kesitli Yığma Narin Kolonların Burkulma Yüklerinin Karşılaştırılması”. Politeknik Dergisi, vol. 24, no. 1, 2021, pp. 131-42, doi:10.2339/politeknik.561059.
Vancouver Gürel A, İzol R, İpekyüz B, Arda Büyüktaşkın HA, Pekgökgöz RK. Dikdörtgen ve Daire Kesitli Yığma Narin Kolonların Burkulma Yüklerinin Karşılaştırılması. Politeknik Dergisi. 2021;24(1):131-42.