Research Article
BibTex RIS Cite

Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications

Year 2021, Volume: 24 Issue: 1, 263 - 273, 01.03.2021
https://doi.org/10.2339/politeknik.628222

Abstract

Chitosan (CH) films were obtained by casting method and sandwiched between 2 layers of polycaprolactone (PCL), which were formed by compression molding, to form trilayers. CH films were also incorporated with grape seed extract (G) (15%, w/w) and/or nanocellulose (N) (1-5%, w/w). The tensile properties, transmittance, opacity, water vapor permeability (WVP), antimicrobial activity, and release behavior of trilayers were determined. The elastic modulus (EM) of trilayer films were not significantly affected by the N content, while higher N concentrations resulted in higher tensile strength (TS) values. The incorporation of G led to higher elongation values and resulted in lower EM and TS values. Film samples, including N, presented lower WVP values, whereas higher WVP and water solubility values were obtained with G inclusion (p<0.05). L* and transmittance values increased with the increasing N content while the opacity values decreased (p<0.05). Furthermore, films added G showed significantly higher a* and b* values. The addition of N caused slower release of G from CH films through the selected food simulants. The obtained trilayer films also inhibited selected main pathogenic bacteria. The fabrication of PCL and CH films in the trilayer form enhanced the properties of CH and made these films more appropriate for food packaging.

References

  • [1] Khan R. A., Salmieri S., Dussault D., Sharmin N., Lacroix M., M”echanical, Barrier, and Interfacial Properties of Biodegradable Composite Films Made of Methylcellulose and Poly(caprolactone)”, Journal of Applied Polymer Science, 123(3): 1690-1697, (2012).
  • [2] Bonilla J., Fortunati E., Atarés L., Chiralt A., Kenny J. M., “Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films”, Food Hydrocolloids, 35: 463–470, (2014).
  • [3] Chamanara V., Shabanpour B., Gorgin S., Khomeiri M., “An investigation on characteristics of rainbow trout coated using chitosan assisted with thyme essential oil”, International Journal of Biological Macromolecules, 50(3): 540–544, (2012).
  • [4] Rubilar J. F., Cruz R. M., Silva H. D., Vicente A. A., Khmelinskii I., Vieira M. C., Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. Journal of Food Engineering, 115: 466–474, (2013).
  • [5] Hosseini M. H., Razavi S. H., Mousavi M. A., “Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils”, Journal of Food Processing and Preservation, 33: 727–743, (2009).
  • [6] Rubentheren V., Ward T. A., Chee C. Y., Nair P., “Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid”, Cellulose, 22: 2529–2541”, (2015).
  • [7] Ferreira A. S., Nunes C., Castro A., Ferreira P., Coimbra M. A., “Influence of grape pomace extract incorporation on chitosan films properties”, Carbohydrate Polymers, 113: 490–499, (2014).
  • [8] Moradi M., Tajik H., Razavi Rohani S. M., Oromiehie A. R., Malekinejad H., Aliakbarlu J., Hadian M., “Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract”, LWT—Food Science and Technology, 46: 477–484, (2012).
  • [9] Suppakul P., Miltz J., Sonneveld K., Bigger S. W., “Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications”, Journal of Food Science, 68: 408-420, (2003).
  • [10] Boumail A., Salmieri S., Klimas E., Tawema P.O., Bouchard J., Lacroix M., “Characterization of Trilayer Antimicrobial Diffusion Films (ADFs) Based on Methylcellulose−Polycaprolactone Composites”, Journal of Agricultural and Food Chemistry, 61: 811−821, (2013).
  • [11] Azevedo V. M., Dias M. V., Borges S. V., Costa A. L. R., Silva E. K., Medeiros É. A. A., Soares N. de F. F., “Development of whey protein isolate bio-nanocomposites: Effect of montmorillonite and citric acid on structural, thermal, morphological and mechanical properties”, Food Hydrocolloids, 48: 179–188 (2015).
  • [12] Ilyas R. A., Sapuan S. M., Ishak M. R., Zainudin E. S., “Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites”, Carbohydrate Polymers, 202: 186–202, (2018).
  • [13] Huang J.-Y., Li X., Zhou W., “Safety assessment of nanocomposite for food packaging application”, Trends in Food Science & Technology, 45(2): 187–199, (2015).
  • [14] Khan R.A., Salmieri S., Dussault D., Uribe-Calderon J., Kamal M., Safrany A., Lacroix M., “Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films”, Journal of Agricultural and Food Chemistry, 58: 10205–10214, (2010a).
  • [15] Sogut E., Seydim A.C., “Development of Chitosan and Polycaprolactone based active bilayer films enhanced with nanocellulose and grape seed extract”, Carbohydrate Polymers, 195: 180–188, (2018a).
  • [16] Sogut E., Seydim A.C., “Characterization of cyclic olefin copolymer‐coated chitosan bilayer films containing nanocellulose and grape seed extract”, Packaging Technology and Science, 31: 499–508, (2018b).
  • [17] Azeredo H. M. C., Mattoso L. H. C., Avena-Bustillos, R. J., Filho, G. C., Munford, M. L., Wood, D., McHugh, T. H., “Nanocellulose Reinforced Chitosan Composite Films as Affected by Nanofiller Loading and Plasticizer Content”, Journal of Food Science, 75: N1−N7, (2010).
  • [18] Averous L., Fringant C., “Association between plasticized starch and polyesters: processing and performances of injected biodegradable systems”, Polymer Engineering and Science, 41(5): 727–34, (2001).
  • [19] Alix S., Mahieu A., Terrie C., Soulestin J., Gerault E., Feuilloley M.G.J., Gattin R., Edon V., Ait-Younes T., Leblanc N., “Active pseudo-multilayered films from polycaprolactone and starch based matrix for food-packaging applications”, European Polymer Journal, 49: 1234–1242, (2013).
  • [20] Averous L., Moro L., Dole P., Fringant C., “Properties of thermoplastic blends: starch-polycaprolactone”, Polymer; 41(11):4157–67, (2000).
  • [21] Takala P. N., Salmieri S., Boumail A., Khan R. A., Vu K. D., Chauve G., Bouchard J., Lacroix M., “Antimicrobial effect and physicochemical properties of bioactive trilayer polycaprolactone/methylcellulose-based films on the growth of foodborne pathogens and total microbiota in fresh broccoli”, Journal of Food Engineering, 116: 648-655, (2013).
  • [22] Khan R. A., Parsons, A. J., Jones, I. A., Walker, G. S., Rudd, C. D., “Preparation and characterization of phosphate glass fibers and fabrication of poly(caprolactone) matrix resorbable composites”, Journal of Reinforced Plastics and Composites, 29: 1838–1850, (2010b).
  • [23] Salmieri S., Lacroix M., “Physicochemical properties of alginate/polycaprolactone-based films containing essential oils”, Journal of Agricultural and Food Chemistry, 54: 10205–10214, (2006).
  • [24] Sharmin N., Khan R. A., Salmieri S., Dussault D., Lacroix M., “Effectiveness of Silane Monomer on Chitosan Films and PCL-Based Tri-Layer Films”, Journal of Applied Polymer Science, 125:224–232, (2012).
  • [25] Fabra M. J., Lopez-Rubio A., Sentandreu E., Lagaron J. M., “Development of multilayer corn starch-based food packaging structures containing b-carotene by means of the electro-hydrodynamic processing”, Starch/Stärke, 68:603–610, (2016).
  • [26] Shi C., Zhang S., Li M., Sun W., Fan G., Jin Y., Yang J., Dong T., “Barrier and Mechanical Properties of Biodegradable Poly(e-caprolactone)/Cellophane Multilayer Film”, Journal of Applied Polymer Science, 130(3):1805-1811, (2013).
  • [27] Matthews B., Mangalasary S., Darby D., Cooksey, K., “Effectiveness of barrier film with a cellulose coating that carries Nisin blends for the inhibition of Listeria monocytogenes”, Packaging Technology and Science, 23: 267−273, (2010).
  • [28] Matan N., Rimkeeree H., Mawson A., Chompreeda P., Haruthaithanasan V., Parker M., “Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions”, International Journal of Food Microbiology, 107: 180–185, (2006).
  • [29] Appendini P., Hotchkiss J. H., “Review of antimicrobial food packaging”, Innovative Food Science Emerging Technology, 3: 113–126, (2002).
  • [30] Monagas M., Gómez-Cordovés C., Bartolomé B., Laureano O., Ricardo Da Silva J. M., “Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, tempranillo, and cabernet sauvignon”, Journal of Agricultural and Food Chemistry, 51(22): 6475–6481, (2003).
  • [31] Sogut E., Seydim A. C., “The effects of Chitosan and grape seed extract-based edible films on the quality of vacuum packaged chicken breast fillets”, Food Packaging and Shelf Life, 18: 13–20, (2018c).
  • [32] Corrales M., Han J. H., Tauscher B., “Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films”, International Journal of Food Science & Technology, 44(2):425 – 433, (2009).
  • [33] Shahbazi Y., “The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging”, International Journal of Biological Macromolecules, 99: 746-753, (2017).
  • [34] ASTM D882, American Society for Testing and Materials: Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM Stand., (2018).
  • [35] ASTM E96/E96M-16, American Society for Testing and Materials, Standard Test Methods for Water Vapor Transmission of Materials, ASTM Stand, 2016.
  • [36] Commission Regulation (EC), 2016/1416 of 24 August 2016 Amending and Correcting Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food, (2016).
  • [37] Korsmeyer R. W., Gurny R., Doelker E., Buri P., Peppas N. A., “Mechanisms of solute release from porous hydrophilic polymers”, International Journal of Pharmaceutics, 15: 25–35, (1983).
  • [38] Rivero S., García M. A., Pinotti A., “Crosslinking capacity of tannic acid in plasticized chitosan films”, Carbohydrate Polymers, 82: 270–276, (2010).
  • [39] Pereda M., Dufresne A., Aranguren M. I., Marcovich N. E., “Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals”, Carbohydrate Polymers, 101(1): 1018–1026, (2014).
  • [40] Sanchez-Garcia M. D., Ocio M. J., Gimenez E., Lagaron J. M., “Novel Polycaprolactone Nanocomposites Containing Thymol of Interest In Antimicrobial Film And Coating Applications”, Journal of Plastic Film & Sheeting, 24: 239-251, (2008).
  • [41] Liu J., Liu S., Wu Q., Gu Y., Kan J., Jin C., “Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film”, Food Hydrocolloids, 73: 90–100, (2017).
  • [42] Sun L., Sun J., Chen L., Niu P., Yang X., Guo Y., “Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material”, Carbohydrate Polymers, 163: 81-91, (2017).
  • [43] Valencia-Sullca C., Vargas M., Atarés L., Chiralt A., “Thermoplastic cassava starch-chitosan bilayer films containing essential oils”, Food Hydrocolloids, 75: 107–115, (2018).
  • [44] Velickova E., Winkelhausen E., Kuzmanova S., Moldao-Martins M., Alves V. T., “Characterization of multilayered and composite edible films from chitosan and beeswax”, Food Science and Technology International, 21(2): 83–93, (2013).
  • [45] Quiles-Carrillo L., Montanes N., Lagaron J. M., Balart R., Torres-Giner S., “Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers”, Applied Sciences, 9:533, (2019).
  • [46] Zhu J.-Y., Tang C.-H., Yin S.-W., Yang X.-Q., “Development and characterisation of polylactic acid–gliadin bilayer/trilayer films as carriers of thymol”, International Journal of Food Science and Technology, 53:608–618, (2018).
  • [47] Siepmann J., Peppas N. A., “Higuchi equation: derivation, applications, use and misuse”, International Journal of Pharmaceutics, 1: 6-12, (2011).
  • [48] Sogut E., Ili Balqis A. M., Nur Hanani Z. A., Seydim, A. C., “The properties of κ-carrageenan and whey protein isolate blended films containing pomegranate seed oil”, Polymer Testing, in-press, (2019).
  • [49] Talon E., Trifkovic K. T., Vargas M., Chiralt A., Gonzalez-Martinez C., “Release of polyphenols from starch chitosan based films containing thyme extract”, Carbohydrate Polymers, 175: 122–130, (2017).
  • [50] Katalinic V., Mozina S. S., Skroza D., Generali I., Abramovic H., Milos M., Ljubenkov I., Piskernik S., Pezo I., Terpinc P., Boban M., “Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia)”, Food Chemistry, 119: 715–723, (2010).
  • [51] Jin T., Zhang H., “Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging”, Journal of Food Science, 73: M127–M134, (2008).

Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications

Year 2021, Volume: 24 Issue: 1, 263 - 273, 01.03.2021
https://doi.org/10.2339/politeknik.628222

Abstract

Chitosan (CH) films were obtained by casting method and sandwiched between 2 layers of polycaprolactone (PCL), which were formed by compression molding, to form trilayers. CH films were also incorporated with grape seed extract (G) (15%, w/w) and/or nanocellulose (N) (1-5%, w/w). The tensile properties, transmittance, opacity, water vapor permeability (WVP), antimicrobial activity, and release behavior of trilayers were determined. The elastic modulus (EM) of trilayer films were not significantly affected by the N content, while higher N concentrations resulted in higher tensile strength (TS) values. The incorporation of G led to higher elongation values and resulted in lower EM and TS values. Film samples, including N, presented lower WVP values, whereas higher WVP and water solubility values were obtained with G inclusion (p<0.05). L* and transmittance values increased with the increasing N content while the opacity values decreased (p<0.05). Furthermore, films added G showed significantly higher a* and b* values. The addition of N caused slower release of G from CH films through the selected food simulants. The obtained trilayer films also inhibited selected main pathogenic bacteria. The fabrication of PCL and CH films in the trilayer form enhanced the properties of CH and made these films more appropriate for food packaging.

References

  • [1] Khan R. A., Salmieri S., Dussault D., Sharmin N., Lacroix M., M”echanical, Barrier, and Interfacial Properties of Biodegradable Composite Films Made of Methylcellulose and Poly(caprolactone)”, Journal of Applied Polymer Science, 123(3): 1690-1697, (2012).
  • [2] Bonilla J., Fortunati E., Atarés L., Chiralt A., Kenny J. M., “Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films”, Food Hydrocolloids, 35: 463–470, (2014).
  • [3] Chamanara V., Shabanpour B., Gorgin S., Khomeiri M., “An investigation on characteristics of rainbow trout coated using chitosan assisted with thyme essential oil”, International Journal of Biological Macromolecules, 50(3): 540–544, (2012).
  • [4] Rubilar J. F., Cruz R. M., Silva H. D., Vicente A. A., Khmelinskii I., Vieira M. C., Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. Journal of Food Engineering, 115: 466–474, (2013).
  • [5] Hosseini M. H., Razavi S. H., Mousavi M. A., “Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils”, Journal of Food Processing and Preservation, 33: 727–743, (2009).
  • [6] Rubentheren V., Ward T. A., Chee C. Y., Nair P., “Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid”, Cellulose, 22: 2529–2541”, (2015).
  • [7] Ferreira A. S., Nunes C., Castro A., Ferreira P., Coimbra M. A., “Influence of grape pomace extract incorporation on chitosan films properties”, Carbohydrate Polymers, 113: 490–499, (2014).
  • [8] Moradi M., Tajik H., Razavi Rohani S. M., Oromiehie A. R., Malekinejad H., Aliakbarlu J., Hadian M., “Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract”, LWT—Food Science and Technology, 46: 477–484, (2012).
  • [9] Suppakul P., Miltz J., Sonneveld K., Bigger S. W., “Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications”, Journal of Food Science, 68: 408-420, (2003).
  • [10] Boumail A., Salmieri S., Klimas E., Tawema P.O., Bouchard J., Lacroix M., “Characterization of Trilayer Antimicrobial Diffusion Films (ADFs) Based on Methylcellulose−Polycaprolactone Composites”, Journal of Agricultural and Food Chemistry, 61: 811−821, (2013).
  • [11] Azevedo V. M., Dias M. V., Borges S. V., Costa A. L. R., Silva E. K., Medeiros É. A. A., Soares N. de F. F., “Development of whey protein isolate bio-nanocomposites: Effect of montmorillonite and citric acid on structural, thermal, morphological and mechanical properties”, Food Hydrocolloids, 48: 179–188 (2015).
  • [12] Ilyas R. A., Sapuan S. M., Ishak M. R., Zainudin E. S., “Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites”, Carbohydrate Polymers, 202: 186–202, (2018).
  • [13] Huang J.-Y., Li X., Zhou W., “Safety assessment of nanocomposite for food packaging application”, Trends in Food Science & Technology, 45(2): 187–199, (2015).
  • [14] Khan R.A., Salmieri S., Dussault D., Uribe-Calderon J., Kamal M., Safrany A., Lacroix M., “Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films”, Journal of Agricultural and Food Chemistry, 58: 10205–10214, (2010a).
  • [15] Sogut E., Seydim A.C., “Development of Chitosan and Polycaprolactone based active bilayer films enhanced with nanocellulose and grape seed extract”, Carbohydrate Polymers, 195: 180–188, (2018a).
  • [16] Sogut E., Seydim A.C., “Characterization of cyclic olefin copolymer‐coated chitosan bilayer films containing nanocellulose and grape seed extract”, Packaging Technology and Science, 31: 499–508, (2018b).
  • [17] Azeredo H. M. C., Mattoso L. H. C., Avena-Bustillos, R. J., Filho, G. C., Munford, M. L., Wood, D., McHugh, T. H., “Nanocellulose Reinforced Chitosan Composite Films as Affected by Nanofiller Loading and Plasticizer Content”, Journal of Food Science, 75: N1−N7, (2010).
  • [18] Averous L., Fringant C., “Association between plasticized starch and polyesters: processing and performances of injected biodegradable systems”, Polymer Engineering and Science, 41(5): 727–34, (2001).
  • [19] Alix S., Mahieu A., Terrie C., Soulestin J., Gerault E., Feuilloley M.G.J., Gattin R., Edon V., Ait-Younes T., Leblanc N., “Active pseudo-multilayered films from polycaprolactone and starch based matrix for food-packaging applications”, European Polymer Journal, 49: 1234–1242, (2013).
  • [20] Averous L., Moro L., Dole P., Fringant C., “Properties of thermoplastic blends: starch-polycaprolactone”, Polymer; 41(11):4157–67, (2000).
  • [21] Takala P. N., Salmieri S., Boumail A., Khan R. A., Vu K. D., Chauve G., Bouchard J., Lacroix M., “Antimicrobial effect and physicochemical properties of bioactive trilayer polycaprolactone/methylcellulose-based films on the growth of foodborne pathogens and total microbiota in fresh broccoli”, Journal of Food Engineering, 116: 648-655, (2013).
  • [22] Khan R. A., Parsons, A. J., Jones, I. A., Walker, G. S., Rudd, C. D., “Preparation and characterization of phosphate glass fibers and fabrication of poly(caprolactone) matrix resorbable composites”, Journal of Reinforced Plastics and Composites, 29: 1838–1850, (2010b).
  • [23] Salmieri S., Lacroix M., “Physicochemical properties of alginate/polycaprolactone-based films containing essential oils”, Journal of Agricultural and Food Chemistry, 54: 10205–10214, (2006).
  • [24] Sharmin N., Khan R. A., Salmieri S., Dussault D., Lacroix M., “Effectiveness of Silane Monomer on Chitosan Films and PCL-Based Tri-Layer Films”, Journal of Applied Polymer Science, 125:224–232, (2012).
  • [25] Fabra M. J., Lopez-Rubio A., Sentandreu E., Lagaron J. M., “Development of multilayer corn starch-based food packaging structures containing b-carotene by means of the electro-hydrodynamic processing”, Starch/Stärke, 68:603–610, (2016).
  • [26] Shi C., Zhang S., Li M., Sun W., Fan G., Jin Y., Yang J., Dong T., “Barrier and Mechanical Properties of Biodegradable Poly(e-caprolactone)/Cellophane Multilayer Film”, Journal of Applied Polymer Science, 130(3):1805-1811, (2013).
  • [27] Matthews B., Mangalasary S., Darby D., Cooksey, K., “Effectiveness of barrier film with a cellulose coating that carries Nisin blends for the inhibition of Listeria monocytogenes”, Packaging Technology and Science, 23: 267−273, (2010).
  • [28] Matan N., Rimkeeree H., Mawson A., Chompreeda P., Haruthaithanasan V., Parker M., “Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions”, International Journal of Food Microbiology, 107: 180–185, (2006).
  • [29] Appendini P., Hotchkiss J. H., “Review of antimicrobial food packaging”, Innovative Food Science Emerging Technology, 3: 113–126, (2002).
  • [30] Monagas M., Gómez-Cordovés C., Bartolomé B., Laureano O., Ricardo Da Silva J. M., “Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, tempranillo, and cabernet sauvignon”, Journal of Agricultural and Food Chemistry, 51(22): 6475–6481, (2003).
  • [31] Sogut E., Seydim A. C., “The effects of Chitosan and grape seed extract-based edible films on the quality of vacuum packaged chicken breast fillets”, Food Packaging and Shelf Life, 18: 13–20, (2018c).
  • [32] Corrales M., Han J. H., Tauscher B., “Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films”, International Journal of Food Science & Technology, 44(2):425 – 433, (2009).
  • [33] Shahbazi Y., “The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging”, International Journal of Biological Macromolecules, 99: 746-753, (2017).
  • [34] ASTM D882, American Society for Testing and Materials: Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM Stand., (2018).
  • [35] ASTM E96/E96M-16, American Society for Testing and Materials, Standard Test Methods for Water Vapor Transmission of Materials, ASTM Stand, 2016.
  • [36] Commission Regulation (EC), 2016/1416 of 24 August 2016 Amending and Correcting Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food, (2016).
  • [37] Korsmeyer R. W., Gurny R., Doelker E., Buri P., Peppas N. A., “Mechanisms of solute release from porous hydrophilic polymers”, International Journal of Pharmaceutics, 15: 25–35, (1983).
  • [38] Rivero S., García M. A., Pinotti A., “Crosslinking capacity of tannic acid in plasticized chitosan films”, Carbohydrate Polymers, 82: 270–276, (2010).
  • [39] Pereda M., Dufresne A., Aranguren M. I., Marcovich N. E., “Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals”, Carbohydrate Polymers, 101(1): 1018–1026, (2014).
  • [40] Sanchez-Garcia M. D., Ocio M. J., Gimenez E., Lagaron J. M., “Novel Polycaprolactone Nanocomposites Containing Thymol of Interest In Antimicrobial Film And Coating Applications”, Journal of Plastic Film & Sheeting, 24: 239-251, (2008).
  • [41] Liu J., Liu S., Wu Q., Gu Y., Kan J., Jin C., “Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film”, Food Hydrocolloids, 73: 90–100, (2017).
  • [42] Sun L., Sun J., Chen L., Niu P., Yang X., Guo Y., “Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material”, Carbohydrate Polymers, 163: 81-91, (2017).
  • [43] Valencia-Sullca C., Vargas M., Atarés L., Chiralt A., “Thermoplastic cassava starch-chitosan bilayer films containing essential oils”, Food Hydrocolloids, 75: 107–115, (2018).
  • [44] Velickova E., Winkelhausen E., Kuzmanova S., Moldao-Martins M., Alves V. T., “Characterization of multilayered and composite edible films from chitosan and beeswax”, Food Science and Technology International, 21(2): 83–93, (2013).
  • [45] Quiles-Carrillo L., Montanes N., Lagaron J. M., Balart R., Torres-Giner S., “Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers”, Applied Sciences, 9:533, (2019).
  • [46] Zhu J.-Y., Tang C.-H., Yin S.-W., Yang X.-Q., “Development and characterisation of polylactic acid–gliadin bilayer/trilayer films as carriers of thymol”, International Journal of Food Science and Technology, 53:608–618, (2018).
  • [47] Siepmann J., Peppas N. A., “Higuchi equation: derivation, applications, use and misuse”, International Journal of Pharmaceutics, 1: 6-12, (2011).
  • [48] Sogut E., Ili Balqis A. M., Nur Hanani Z. A., Seydim, A. C., “The properties of κ-carrageenan and whey protein isolate blended films containing pomegranate seed oil”, Polymer Testing, in-press, (2019).
  • [49] Talon E., Trifkovic K. T., Vargas M., Chiralt A., Gonzalez-Martinez C., “Release of polyphenols from starch chitosan based films containing thyme extract”, Carbohydrate Polymers, 175: 122–130, (2017).
  • [50] Katalinic V., Mozina S. S., Skroza D., Generali I., Abramovic H., Milos M., Ljubenkov I., Piskernik S., Pezo I., Terpinc P., Boban M., “Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia)”, Food Chemistry, 119: 715–723, (2010).
  • [51] Jin T., Zhang H., “Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging”, Journal of Food Science, 73: M127–M134, (2008).
There are 51 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ece Söğüt 0000-0003-4052-993X

Atıf Can Seydim 0000-0003-3808-509X

Publication Date March 1, 2021
Submission Date October 2, 2019
Published in Issue Year 2021 Volume: 24 Issue: 1

Cite

APA Söğüt, E., & Seydim, A. C. (2021). Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications. Politeknik Dergisi, 24(1), 263-273. https://doi.org/10.2339/politeknik.628222
AMA Söğüt E, Seydim AC. Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications. Politeknik Dergisi. March 2021;24(1):263-273. doi:10.2339/politeknik.628222
Chicago Söğüt, Ece, and Atıf Can Seydim. “Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications”. Politeknik Dergisi 24, no. 1 (March 2021): 263-73. https://doi.org/10.2339/politeknik.628222.
EndNote Söğüt E, Seydim AC (March 1, 2021) Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications. Politeknik Dergisi 24 1 263–273.
IEEE E. Söğüt and A. C. Seydim, “Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications”, Politeknik Dergisi, vol. 24, no. 1, pp. 263–273, 2021, doi: 10.2339/politeknik.628222.
ISNAD Söğüt, Ece - Seydim, Atıf Can. “Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications”. Politeknik Dergisi 24/1 (March 2021), 263-273. https://doi.org/10.2339/politeknik.628222.
JAMA Söğüt E, Seydim AC. Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications. Politeknik Dergisi. 2021;24:263–273.
MLA Söğüt, Ece and Atıf Can Seydim. “Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications”. Politeknik Dergisi, vol. 24, no. 1, 2021, pp. 263-7, doi:10.2339/politeknik.628222.
Vancouver Söğüt E, Seydim AC. Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications. Politeknik Dergisi. 2021;24(1):263-7.