Research Article
BibTex RIS Cite

Hexachlorocyclohexane (HCH): Optimization of Mechanochemical Degradation Process by CaO

Year 2021, Volume: 24 Issue: 2, 439 - 452, 01.06.2021
https://doi.org/10.2339/politeknik.443045

Abstract

Although the use of hexachlorocyclohexane (HCH,C6H6Cl6) as the pesticide for agricultural purposes is now prohibited in many countries because of its hazardousness, stockpiles of HCH still available today. At this point mechanochemical degradation (MCD) has a remarkable potential for the environmental disposal of some HCH isomers. But the mechanism still needs to be further researched and optimized for better reaction conditions to achieve satisfactory degradation of dominant HCH isomers (α-, β-, γ-, and δ-HCH) together with the reduction of energy consumption and increasing the dechlorination efficiency. While all the previous studies have revealed the effects of operating conditions such as rotational speed, ball size and mass ratios individually, interactions between general parameters have not been determined yet. In the present work, relationships between parameters were investigated, for the first time, using response surface statistical model (RSM) with Box-Behnken Design (BBD) and the operating parameters interactions were optimized on the degradation efficiency of MCD with calcium oxide (CaO) which provides electrons to HCH isomers by planetary ball mill. The experimental results indicated that the best degradation efficiency (%100) was achieved after 480 min. grinding at a charge ratio 1/20 (0,05) HCH/CaO with 1/5 (0,2) mixture/ball mass ratio and a mill rotation speed of 700 rpm. Based on these results, optimization of operating parameters allowed the degradation of dominant HCH isomers effectively and in fast manner. These approaches may also be beneficial for ex situ disposing of other persistent organic pollutants (POPs) by MCD. 

References

  • [1] Heinicke, G., Henning, H.P., Linke, E., Steinike, U., Thiessen, K.P., Meyer, K., Tribochemistry, Akademic-Verlag, 97-180, 1984.
  • [2] Boldyrev, V.V. and Tkácová, K., Mechanochemistry of solids: past, present, and prospects, J. Mater. Synth. Process, 8 (2-4), 121-132, 2000.
  • [3] Wieczorek-Ciurowa, K. and Gamrat, K., Mechanochemical syntheses as an example of gren processes, Journal of Thermal Analysis and Calorimetry, 88, 213-217, 2007.
  • [4] Lu, S., Huang, J., Peng, Z., Lia, X. and Yan, J., Ball milling 2,4,6-trichlorophenol with calcium oxide: Dechlorination experiment and mechanism considerations, Chemical Engineering Journal, 195, 62–68, 2012.
  • [5] Mitchenko, S.A., Mechanochemıstry in heterogeneous catalysis, Theoretical and Experimental Chemistry, 43 (4), 211-228, 2007.
  • [6] Cagnetta, G., Robertson, J., Huang, J., Zhang, K. and Yu, G., Mechanochemical destruction of halogenated organic pollutants: A critical review, Journal of Hazardous Materials, 313, 85-102, 2016.
  • [7] Rowlands, S.A., Hall, A.K., Mccormick, P.G., Street, R., Hart, R. J., Ebell, G.F. and Donecker, P., Destruction of toxic materials. Nature, 367, 223, 1993.
  • [8] Zhang, Q.W., Matsumoto, H., Saito, F. and Baron, M., Debromination of hexabromobenzene by its co-grinding with CaO. Chemosphere, 48, 787–793, 2002.
  • [9] Zhang, K., Huang, J., Yu, G., Zhang, Q., Deng, S. and Wang, B., Destruction of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) by Ball Milling. Environmental Science and Technology, 47 (12), 6471–6477, 2013.
  • [10] Nah, I.W., Hwang, K. and Shul, Y., Effect of metal and glycol on mechanochemical dechlorination of polychlorinated biphenyls (PCBs). Chemosphere, 73 (1), 138–141, 2008.
  • [11] Birke, V., Mattik, J., Runne, D., Benning, H. and Zlatovic, D., Dechlorination of recalcitrant polychlorinated contaminants using ball milling. In: Proceedings of the NATO ARW on ecological risks associated with the destruction of chemical weapons. Vol. I: 111–127, 2003.
  • [12] Zhang, K., Huang, J., Zhang, W., yu, Y., Deng, S. and Yu, G., Mechanochemical Degradation of Tetrabromobisphenol A: Performance, Products and Pathway. Journal Hazardous Materials, 243, 278-285, 2012.
  • [13] Yu, Y., Huang, J., Zhang, W., Zhang, K., Deng, S. and Yu, G., Mechanochemical destruction of mirex co-ground with iron and quartz in a planetary ball mill. Chemosphere, 90(5), 1729-1735, 2013.
  • [14] Shu, S., Junya, K., Fumio, S., Shimme, K., Masuda, S. and Inoue, T., Effect of additives on dechlorination of PVC by mechanochemical treatment. Journal of Material Cycles and Waste Management, 3(1), 20–23, 2001.
  • [15] Kuziora, P., Wyszynska, M., Polanski, M. and Bystrzycki, J., Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process. International Journal of Hydrogen Energy, 39, 9883-9887, 2014.
  • [16] Gotor, F.J., Achimovicova, M., Real, C. and Balaz, P., Influence of the milling parameters on the mechanical work intensity in planetary mills. Powder Technology, 233, 1-7, 2013.
  • [17] Bakhshai, A., Soika, V., Susol, M.A. and Takacs, L., Mechanochemical Reactions in the Sn–Zn–S System: Further Studies. Journal of Solid State Chemistry, 153, 371-380, 2000.
  • [18] Cangialosi, F., Intini, G., Liberti, L., Notarnicola, M., Pastore, T. and Sasso, S., Mechanochemical treatment of contaminated marine sediments for PAH degradation. Chemistry for Sustainable Development, 15, 139-145, 2007.
  • [19] Xu, Z., Zhang, X. and Fei, Q., Dechlorination of pentachlorophenol by grinding at low rotation speed in short time. Chinese Journal of Chemical Engineering, 23, 578-582, 2015.
  • [20] Shek, M.A.H., Hena, A.C.A., Marin, C.M. and Castaneda, H.T., Solar photo-Fentom optimisation in treating carbofuran-contaminated water. Ingenieria E Investigacion, 32, 71-76, 2012.
  • [21] Ren, Y., Kang, S. and Zhu J., Mechanochemical degradation of hexachlorobenzene using Mg/Al2O3 as additive. Journal of Material Cycles and Waste Management, 17, 607-615, 2015.
  • [22] Zhang, W., Huang, J., Yu, G., Deng, S. and Zhu, W., Mechanochemical destruction of Dechlorane Plus with calcium oxide. Chemosphere, 81, 345-350, 2010.
  • [23] Bingöl, D., Aydoğan, S. and Bozbaş, S.K., Wet mechanochemical processing of celestine using (NH4)2CO3. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21, 278-284, 2017.
  • [24] Balaz, M., Balaz, P., Bujnakova, Z., Pap, Z., Kupka, D. And Zorkovska, A., Mechanochemical Dechlorination of PVC by Utilizing Eggshell Waste. Acta. Physica. Polonica A, 126, 884-887, 2014.
  • [25] Nomura, Y., Fujiwara, K., Terada, A., Nakai, S. and Hosomi, M., Mechanochemical degradation of γ-hexachlorocyclohexane by a planetary ball mill in the presence of CaO. Chemosphere, 86, 228-234, 2012.
  • [26] Yan, J.H., Peng, Z., Lu, S.Y., Li, X.D., Ni, M.J., Cen, K.F. and Dai, H.F., Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration. Journal of Hazardous Materials, 147, 652-657, 2007.

Hegzaklorosiklohegzan (HCH): CaO kullanılarak Mekanokimyasal Parçalanma Prosesinin Optimizasyonu

Year 2021, Volume: 24 Issue: 2, 439 - 452, 01.06.2021
https://doi.org/10.2339/politeknik.443045

Abstract

Tarımsal amaçlı pestisit olarak hegzaklorosiklohegzan (HCH, C6H6Cl6) kullanımı, tehlikeli olması nedeniyle artık birçok ülkede yasaklanmış olmasına rağmen, günümüzde hala HCH stokları bulunmaktadır. Bu noktada mekanokimyasal parçalanma (MKP) yöntemi HCH izomerlerinin çevresel bertarafı için büyük bir potansiyele sahiptir. Ancak baskın HCH izomerlerinin (α, β-, γ- ve δ-HCH) bir arada tatmin edici şekilde parçalanmasını sağlamak, enerji tüketimini azaltmak ve deklorinasyon verimliliğini arttırmak için daha fazla araştırmaya ve daha iyi reaksiyon koşulları için optimize edilmesine ihtiyaç duyulmaktadır. Geçmiş çalışmalarda dönüş hızı, bilye boyutu ve kütle oranları gibi işletme koşullarının bireysel etkileri ortaya konsa da, genel parametreler arasındaki etkileşimler hala belirsizdir. Mevcut çalışmada, gezegen hareketli bilyalı değirmen kullanılarak ilk kez parametreler arasındaki ilişkiler, tepki yüzey modeli (TYM) ve Box-Behnken Dizayn (BBD) tasarımı istatistiksel yöntemi kullanılarak araştırılmış ve HCH izomerlerine elektron sağlayan kalsiyum oksit (CaO) varlığında MKP’nin parçalama verimi üzerinde etkili olan işletme parametre etkileşimleri optimize edilmiştir. Deneysel sonuçlar, en iyi parçalanma veriminin (%100) 480 dk.’da 1/20 (0,05) HCH/CaO şarj oranı ile 1/5 (0,2) karışım/bilye kütle oranı ve 700 devir/dakika dönüş hızında elde edildiğini göstermiştir. Elde edilen sonuçlara göre, işletme parametrelerinin optimizasyonu baskın HCH izomerlerinin bir arada parçalanmasının etkin ve hızlı bir şekilde gerçekleşmesini sağlamıştır. Bu yaklaşım, diğer kalıcı organik kirleticilerin (KOK) mekanokimyasal yöntemle alan dışında (ex situ) bertarafında da faydalı olacaktır. 

References

  • [1] Heinicke, G., Henning, H.P., Linke, E., Steinike, U., Thiessen, K.P., Meyer, K., Tribochemistry, Akademic-Verlag, 97-180, 1984.
  • [2] Boldyrev, V.V. and Tkácová, K., Mechanochemistry of solids: past, present, and prospects, J. Mater. Synth. Process, 8 (2-4), 121-132, 2000.
  • [3] Wieczorek-Ciurowa, K. and Gamrat, K., Mechanochemical syntheses as an example of gren processes, Journal of Thermal Analysis and Calorimetry, 88, 213-217, 2007.
  • [4] Lu, S., Huang, J., Peng, Z., Lia, X. and Yan, J., Ball milling 2,4,6-trichlorophenol with calcium oxide: Dechlorination experiment and mechanism considerations, Chemical Engineering Journal, 195, 62–68, 2012.
  • [5] Mitchenko, S.A., Mechanochemıstry in heterogeneous catalysis, Theoretical and Experimental Chemistry, 43 (4), 211-228, 2007.
  • [6] Cagnetta, G., Robertson, J., Huang, J., Zhang, K. and Yu, G., Mechanochemical destruction of halogenated organic pollutants: A critical review, Journal of Hazardous Materials, 313, 85-102, 2016.
  • [7] Rowlands, S.A., Hall, A.K., Mccormick, P.G., Street, R., Hart, R. J., Ebell, G.F. and Donecker, P., Destruction of toxic materials. Nature, 367, 223, 1993.
  • [8] Zhang, Q.W., Matsumoto, H., Saito, F. and Baron, M., Debromination of hexabromobenzene by its co-grinding with CaO. Chemosphere, 48, 787–793, 2002.
  • [9] Zhang, K., Huang, J., Yu, G., Zhang, Q., Deng, S. and Wang, B., Destruction of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) by Ball Milling. Environmental Science and Technology, 47 (12), 6471–6477, 2013.
  • [10] Nah, I.W., Hwang, K. and Shul, Y., Effect of metal and glycol on mechanochemical dechlorination of polychlorinated biphenyls (PCBs). Chemosphere, 73 (1), 138–141, 2008.
  • [11] Birke, V., Mattik, J., Runne, D., Benning, H. and Zlatovic, D., Dechlorination of recalcitrant polychlorinated contaminants using ball milling. In: Proceedings of the NATO ARW on ecological risks associated with the destruction of chemical weapons. Vol. I: 111–127, 2003.
  • [12] Zhang, K., Huang, J., Zhang, W., yu, Y., Deng, S. and Yu, G., Mechanochemical Degradation of Tetrabromobisphenol A: Performance, Products and Pathway. Journal Hazardous Materials, 243, 278-285, 2012.
  • [13] Yu, Y., Huang, J., Zhang, W., Zhang, K., Deng, S. and Yu, G., Mechanochemical destruction of mirex co-ground with iron and quartz in a planetary ball mill. Chemosphere, 90(5), 1729-1735, 2013.
  • [14] Shu, S., Junya, K., Fumio, S., Shimme, K., Masuda, S. and Inoue, T., Effect of additives on dechlorination of PVC by mechanochemical treatment. Journal of Material Cycles and Waste Management, 3(1), 20–23, 2001.
  • [15] Kuziora, P., Wyszynska, M., Polanski, M. and Bystrzycki, J., Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process. International Journal of Hydrogen Energy, 39, 9883-9887, 2014.
  • [16] Gotor, F.J., Achimovicova, M., Real, C. and Balaz, P., Influence of the milling parameters on the mechanical work intensity in planetary mills. Powder Technology, 233, 1-7, 2013.
  • [17] Bakhshai, A., Soika, V., Susol, M.A. and Takacs, L., Mechanochemical Reactions in the Sn–Zn–S System: Further Studies. Journal of Solid State Chemistry, 153, 371-380, 2000.
  • [18] Cangialosi, F., Intini, G., Liberti, L., Notarnicola, M., Pastore, T. and Sasso, S., Mechanochemical treatment of contaminated marine sediments for PAH degradation. Chemistry for Sustainable Development, 15, 139-145, 2007.
  • [19] Xu, Z., Zhang, X. and Fei, Q., Dechlorination of pentachlorophenol by grinding at low rotation speed in short time. Chinese Journal of Chemical Engineering, 23, 578-582, 2015.
  • [20] Shek, M.A.H., Hena, A.C.A., Marin, C.M. and Castaneda, H.T., Solar photo-Fentom optimisation in treating carbofuran-contaminated water. Ingenieria E Investigacion, 32, 71-76, 2012.
  • [21] Ren, Y., Kang, S. and Zhu J., Mechanochemical degradation of hexachlorobenzene using Mg/Al2O3 as additive. Journal of Material Cycles and Waste Management, 17, 607-615, 2015.
  • [22] Zhang, W., Huang, J., Yu, G., Deng, S. and Zhu, W., Mechanochemical destruction of Dechlorane Plus with calcium oxide. Chemosphere, 81, 345-350, 2010.
  • [23] Bingöl, D., Aydoğan, S. and Bozbaş, S.K., Wet mechanochemical processing of celestine using (NH4)2CO3. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21, 278-284, 2017.
  • [24] Balaz, M., Balaz, P., Bujnakova, Z., Pap, Z., Kupka, D. And Zorkovska, A., Mechanochemical Dechlorination of PVC by Utilizing Eggshell Waste. Acta. Physica. Polonica A, 126, 884-887, 2014.
  • [25] Nomura, Y., Fujiwara, K., Terada, A., Nakai, S. and Hosomi, M., Mechanochemical degradation of γ-hexachlorocyclohexane by a planetary ball mill in the presence of CaO. Chemosphere, 86, 228-234, 2012.
  • [26] Yan, J.H., Peng, Z., Lu, S.Y., Li, X.D., Ni, M.J., Cen, K.F. and Dai, H.F., Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration. Journal of Hazardous Materials, 147, 652-657, 2007.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Volkan Pelitli 0000-0001-7332-4151

Uğur Kurt

Publication Date June 1, 2021
Submission Date July 12, 2018
Published in Issue Year 2021 Volume: 24 Issue: 2

Cite

APA Pelitli, V., & Kurt, U. (2021). Hegzaklorosiklohegzan (HCH): CaO kullanılarak Mekanokimyasal Parçalanma Prosesinin Optimizasyonu. Politeknik Dergisi, 24(2), 439-452. https://doi.org/10.2339/politeknik.443045
AMA Pelitli V, Kurt U. Hegzaklorosiklohegzan (HCH): CaO kullanılarak Mekanokimyasal Parçalanma Prosesinin Optimizasyonu. Politeknik Dergisi. June 2021;24(2):439-452. doi:10.2339/politeknik.443045
Chicago Pelitli, Volkan, and Uğur Kurt. “Hegzaklorosiklohegzan (HCH): CaO kullanılarak Mekanokimyasal Parçalanma Prosesinin Optimizasyonu”. Politeknik Dergisi 24, no. 2 (June 2021): 439-52. https://doi.org/10.2339/politeknik.443045.
EndNote Pelitli V, Kurt U (June 1, 2021) Hegzaklorosiklohegzan (HCH): CaO kullanılarak Mekanokimyasal Parçalanma Prosesinin Optimizasyonu. Politeknik Dergisi 24 2 439–452.
IEEE V. Pelitli and U. Kurt, “Hegzaklorosiklohegzan (HCH): CaO kullanılarak Mekanokimyasal Parçalanma Prosesinin Optimizasyonu”, Politeknik Dergisi, vol. 24, no. 2, pp. 439–452, 2021, doi: 10.2339/politeknik.443045.
ISNAD Pelitli, Volkan - Kurt, Uğur. “Hegzaklorosiklohegzan (HCH): CaO kullanılarak Mekanokimyasal Parçalanma Prosesinin Optimizasyonu”. Politeknik Dergisi 24/2 (June 2021), 439-452. https://doi.org/10.2339/politeknik.443045.
JAMA Pelitli V, Kurt U. Hegzaklorosiklohegzan (HCH): CaO kullanılarak Mekanokimyasal Parçalanma Prosesinin Optimizasyonu. Politeknik Dergisi. 2021;24:439–452.
MLA Pelitli, Volkan and Uğur Kurt. “Hegzaklorosiklohegzan (HCH): CaO kullanılarak Mekanokimyasal Parçalanma Prosesinin Optimizasyonu”. Politeknik Dergisi, vol. 24, no. 2, 2021, pp. 439-52, doi:10.2339/politeknik.443045.
Vancouver Pelitli V, Kurt U. Hegzaklorosiklohegzan (HCH): CaO kullanılarak Mekanokimyasal Parçalanma Prosesinin Optimizasyonu. Politeknik Dergisi. 2021;24(2):439-52.

Cited By