Research Article
BibTex RIS Cite

Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure

Year 2021, Volume: 24 Issue: 2, 663 - 672, 01.06.2021
https://doi.org/10.2339/politeknik.784812

Abstract

This paper deals with the elastic stresses of internally or externally pressurized long thick-walled composite cylinders with fixed ends. Cylinders are made of unidirectionally aligned transversely isotropic fibers and isotropic matrix. Axial and radial fiber alignments are considered, and analytical solutions are derived accordingly. Effects of fiber direction and fiber volume fraction alteration on the elastic limit stresses are analyzed. It is observed for both internal and external pressure cases that fiber direction and fiber volume fraction are important parameters which impact the elastic behavior of the cylinders.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1] Ugural A. C., and Fenster S. K., “Advanced Mechanics of Materials and Applied Elasticity”, Prentice Hall, New Jersey, (2003).
  • [2] Timoshenko S. P., and Goodier J. N., “Theory of Elasticity”, McGraw Hill, Palo Alto, (1951).
  • [3] Grigorenko Y. M., and Rozhok L.S., “Stress solutions for transversely isotropic corrugated hollow cylinders. International Applied Mechanics”, International Applied Mechanics, 41(3): 277-282, (2005).
  • [4] Sharma S., Sahni M., and Kumar R., “Elastic-plastic transition of transversely isotropic thick-walled rotating cylinder under internal pressure”, Defence Science Journal, 59(3): 260-264, (2009).
  • [5] Chen Y. Z., and Lin X. Y., “Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials”, Computational Materials Science, 44(2): 581-587, (2008).
  • [6] Fukui Y., and Yamanaka N., “Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure”, JSME International Journal. Ser.1, Solid Mechanics, Strength of Materials, 35(4): 379-385, (1992).
  • [7] Dui G., Xin L.,Yang S., and Zhang J., “An elasticity solution for functionally graded thick-walled tube subjected to internal pressure”, International Journal of Mechanical Sciences, 89: 344–349, (2014).
  • [8] Eraslan A. N., and Akış T., “Plane strain analytical solutions for a functionally graded elastic–plastic pressurized tube”, International Journal of Pressure Vessels and Piping, 83: 635–644, (2006).
  • [9] Tütüncü N., “Stresses in thick-walled fgm cylinders with exponentially-varying properties”, Engineering Structures, 29: 2032–2035, (2007).
  • [10] Akış T., and Eren Ö., “Radyal Yönde Basınç Uygulanan Fonksiyonel Derecelendirilmiş Malzemeden Yapılmış Uzun Tüplerde Von Mises Kriterine Göre Akmanın Başlaması”, Politeknik Dergisi, 18(2): 63-71, (2015).
  • [11] Asgari M., and Akhlaghi M., “Transient thermal stresses in two-dimensional functionally graded thick hollow cylinder with finite length”, Archive of Applied Mechanics, 80: 353-376, (2010).
  • [12] Shao Z. S., “Mechanical and thermal stresses of a functionally graded circular hollow cylinder with finite length”, International Journal of Pressure Vessels and Piping, 82: 155–163, (2005).
  • [13] Ohmichi M., and Noda N., “Steady thermal stresses in functionally graded eccentric polygonal cylinder with circular hole”, Archive of Applied Mechanics, 86: 1163–1177, (2016).
  • [14] Leu S. Y., and Hsu H. C., “Exact solutions for plastic responses of orthotropic strain-hardening rotating hollow cylinders”, International Journal of Mechanical Sciences, 52: 1579–1587 (2010).
  • [15] Tervonen M., and Pramila A., “Stress in a hollow rotating cylindrically orthotropic tube”, Mechanics of Composite Materials, 32(6): 577-581, (1996).
  • [16] Abd-Alla A. M., Mahmoud S. R., and AL-Shehri N. A., “Effect of the rotation on a non-homogeneous infinite cylinder of orthotropic material”, Applied Mathematics and Computation, 217: 8914–8922, (2011).
  • [17] Garmestani H., Vaghar M. R., Markiewicz D., and Chandra, N., “Stress analysis of an orthotropic work-hardening cylinder with body force”, Journal of Structural Mechanics, 23(4): 521-548, (1995).
  • [18] Zenkour A. M., “Rotating variable-thickness orthotropic cylinder containing a solid core of uniform-thickness”, Archive of Applied Mechanics, 76: 89–102, (2006).
  • [19] Çallıoğlu H., Ergün E., and Demirdağ O., “Stress analysis of filament-wound composite cylinders under combined internal pressure and thermal loading”, Advanced Composites Letters, 17(1): 13-21, (2008).
  • [20] Akcay I. H., and Kaynak I., “Analysis of multilayered composite cylinders under thermal loading”, Journal of Reinforced Plastics and Composites, 24(11): 1169-1179, (2005).
  • [21] Starbuck J. M., “Stress analysis of laminated composite cylinders under non-axisymmetric loading”, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, (1999).
  • [22] Ebeid S., Taha I., and Abdel-Ghany A. W., “Failure prediction of fiber reinforced polymer pipes using fea”, International Journal of Engineering and Technical Research, 4(2): 2454-4698, (2016).
  • [23] Parnas L., and Katırcı N., “Design of fiber-reinforced composite pressure vessels under various loading conditions”, Composite Structures, 58(1): 83-95, (2002).
  • [24] Geng P., Xing J. Z., and Chen X. X., “Winding angle optimization of filament-wound cylindrical vessel under internal pressure”, Archive of Applied Mechanics, 87(3): 365-384, (2017).
  • [25] Chamis C. C., “Mechanics of composite materials: past, present, and future”, Journal of Composites, Technology and Research, 11(1): 3-14, (1989).
  • [26] Chamis C. C., “Simplified Composite Micromechanics Equations for Strength, Fracture Toughness, Impact Resistance and Environmental Effects”, National Aeronautics and Space Administration (NASA), CL. OH., (1984).
  • [27] Tsai S. W., and Wu E. M., “A general theory of strength for anisotropic materials”, Journal of Composite Materials, 5(1): 58-80, (1971).
  • [28] Kaw A. K., “Mechanics of Composite Materials”, CRC Press, Boca Raton, (2006).

Analytical Solutions for Transversely Isotropic Fiber-Reinforced Composite Cylinders under Internal or External Pressure

Year 2021, Volume: 24 Issue: 2, 663 - 672, 01.06.2021
https://doi.org/10.2339/politeknik.784812

Abstract

This paper deals with the elastic stresses of internally or externally pressurized long thick-walled composite cylinders with fixed ends. Cylinders are made of unidirectionally aligned transversely isotropic fibers and isotropic matrix. Axial and radial fiber alignments are considered, and analytical solutions are derived accordingly. Effects of fiber direction and fiber volume fraction alteration on the elastic limit stresses are analyzed. It is observed for both internal and external pressure cases that fiber direction and fiber volume fraction are important parameters which impact the elastic behavior of the cylinders.

Project Number

-

References

  • [1] Ugural A. C., and Fenster S. K., “Advanced Mechanics of Materials and Applied Elasticity”, Prentice Hall, New Jersey, (2003).
  • [2] Timoshenko S. P., and Goodier J. N., “Theory of Elasticity”, McGraw Hill, Palo Alto, (1951).
  • [3] Grigorenko Y. M., and Rozhok L.S., “Stress solutions for transversely isotropic corrugated hollow cylinders. International Applied Mechanics”, International Applied Mechanics, 41(3): 277-282, (2005).
  • [4] Sharma S., Sahni M., and Kumar R., “Elastic-plastic transition of transversely isotropic thick-walled rotating cylinder under internal pressure”, Defence Science Journal, 59(3): 260-264, (2009).
  • [5] Chen Y. Z., and Lin X. Y., “Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials”, Computational Materials Science, 44(2): 581-587, (2008).
  • [6] Fukui Y., and Yamanaka N., “Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure”, JSME International Journal. Ser.1, Solid Mechanics, Strength of Materials, 35(4): 379-385, (1992).
  • [7] Dui G., Xin L.,Yang S., and Zhang J., “An elasticity solution for functionally graded thick-walled tube subjected to internal pressure”, International Journal of Mechanical Sciences, 89: 344–349, (2014).
  • [8] Eraslan A. N., and Akış T., “Plane strain analytical solutions for a functionally graded elastic–plastic pressurized tube”, International Journal of Pressure Vessels and Piping, 83: 635–644, (2006).
  • [9] Tütüncü N., “Stresses in thick-walled fgm cylinders with exponentially-varying properties”, Engineering Structures, 29: 2032–2035, (2007).
  • [10] Akış T., and Eren Ö., “Radyal Yönde Basınç Uygulanan Fonksiyonel Derecelendirilmiş Malzemeden Yapılmış Uzun Tüplerde Von Mises Kriterine Göre Akmanın Başlaması”, Politeknik Dergisi, 18(2): 63-71, (2015).
  • [11] Asgari M., and Akhlaghi M., “Transient thermal stresses in two-dimensional functionally graded thick hollow cylinder with finite length”, Archive of Applied Mechanics, 80: 353-376, (2010).
  • [12] Shao Z. S., “Mechanical and thermal stresses of a functionally graded circular hollow cylinder with finite length”, International Journal of Pressure Vessels and Piping, 82: 155–163, (2005).
  • [13] Ohmichi M., and Noda N., “Steady thermal stresses in functionally graded eccentric polygonal cylinder with circular hole”, Archive of Applied Mechanics, 86: 1163–1177, (2016).
  • [14] Leu S. Y., and Hsu H. C., “Exact solutions for plastic responses of orthotropic strain-hardening rotating hollow cylinders”, International Journal of Mechanical Sciences, 52: 1579–1587 (2010).
  • [15] Tervonen M., and Pramila A., “Stress in a hollow rotating cylindrically orthotropic tube”, Mechanics of Composite Materials, 32(6): 577-581, (1996).
  • [16] Abd-Alla A. M., Mahmoud S. R., and AL-Shehri N. A., “Effect of the rotation on a non-homogeneous infinite cylinder of orthotropic material”, Applied Mathematics and Computation, 217: 8914–8922, (2011).
  • [17] Garmestani H., Vaghar M. R., Markiewicz D., and Chandra, N., “Stress analysis of an orthotropic work-hardening cylinder with body force”, Journal of Structural Mechanics, 23(4): 521-548, (1995).
  • [18] Zenkour A. M., “Rotating variable-thickness orthotropic cylinder containing a solid core of uniform-thickness”, Archive of Applied Mechanics, 76: 89–102, (2006).
  • [19] Çallıoğlu H., Ergün E., and Demirdağ O., “Stress analysis of filament-wound composite cylinders under combined internal pressure and thermal loading”, Advanced Composites Letters, 17(1): 13-21, (2008).
  • [20] Akcay I. H., and Kaynak I., “Analysis of multilayered composite cylinders under thermal loading”, Journal of Reinforced Plastics and Composites, 24(11): 1169-1179, (2005).
  • [21] Starbuck J. M., “Stress analysis of laminated composite cylinders under non-axisymmetric loading”, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, (1999).
  • [22] Ebeid S., Taha I., and Abdel-Ghany A. W., “Failure prediction of fiber reinforced polymer pipes using fea”, International Journal of Engineering and Technical Research, 4(2): 2454-4698, (2016).
  • [23] Parnas L., and Katırcı N., “Design of fiber-reinforced composite pressure vessels under various loading conditions”, Composite Structures, 58(1): 83-95, (2002).
  • [24] Geng P., Xing J. Z., and Chen X. X., “Winding angle optimization of filament-wound cylindrical vessel under internal pressure”, Archive of Applied Mechanics, 87(3): 365-384, (2017).
  • [25] Chamis C. C., “Mechanics of composite materials: past, present, and future”, Journal of Composites, Technology and Research, 11(1): 3-14, (1989).
  • [26] Chamis C. C., “Simplified Composite Micromechanics Equations for Strength, Fracture Toughness, Impact Resistance and Environmental Effects”, National Aeronautics and Space Administration (NASA), CL. OH., (1984).
  • [27] Tsai S. W., and Wu E. M., “A general theory of strength for anisotropic materials”, Journal of Composite Materials, 5(1): 58-80, (1971).
  • [28] Kaw A. K., “Mechanics of Composite Materials”, CRC Press, Boca Raton, (2006).
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ömer Can Farukoğlu 0000-0003-3244-8355

İhsan Korkut 0000-0002-5001-4449

Project Number -
Publication Date June 1, 2021
Submission Date August 26, 2020
Published in Issue Year 2021 Volume: 24 Issue: 2

Cite

APA Farukoğlu, Ö. C., & Korkut, İ. (2021). Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure. Politeknik Dergisi, 24(2), 663-672. https://doi.org/10.2339/politeknik.784812
AMA Farukoğlu ÖC, Korkut İ. Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure. Politeknik Dergisi. June 2021;24(2):663-672. doi:10.2339/politeknik.784812
Chicago Farukoğlu, Ömer Can, and İhsan Korkut. “Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure”. Politeknik Dergisi 24, no. 2 (June 2021): 663-72. https://doi.org/10.2339/politeknik.784812.
EndNote Farukoğlu ÖC, Korkut İ (June 1, 2021) Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure. Politeknik Dergisi 24 2 663–672.
IEEE Ö. C. Farukoğlu and İ. Korkut, “Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure”, Politeknik Dergisi, vol. 24, no. 2, pp. 663–672, 2021, doi: 10.2339/politeknik.784812.
ISNAD Farukoğlu, Ömer Can - Korkut, İhsan. “Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure”. Politeknik Dergisi 24/2 (June 2021), 663-672. https://doi.org/10.2339/politeknik.784812.
JAMA Farukoğlu ÖC, Korkut İ. Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure. Politeknik Dergisi. 2021;24:663–672.
MLA Farukoğlu, Ömer Can and İhsan Korkut. “Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure”. Politeknik Dergisi, vol. 24, no. 2, 2021, pp. 663-72, doi:10.2339/politeknik.784812.
Vancouver Farukoğlu ÖC, Korkut İ. Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure. Politeknik Dergisi. 2021;24(2):663-72.