Research Article
BibTex RIS Cite

The Effect of N-Heptane-Tetrahydrofuran Mixtures on Combustion, Performance and Emissions in a Homogeneous Charge Compression Ignition Engine

Year 2021, Volume: 24 Issue: 3, 1033 - 1043, 01.09.2021
https://doi.org/10.2339/politeknik.796099

Abstract

In this study, a single cylinder homogeneous charge compression ignition engine with port injection system was used. By spraying reference n-heptane and tetrahydrofuran-n-heptane blends from the low pressure port injector, a homogeneous mixture was prepared during the intake and compression period. In-cylinder pressure, heat release rate, start of combustion, CA50, combustion duration, indicated thermal efficiency, maximum pressure rise rate analysis were done and hydrocarbon and carbon monoxide emissions were determined. In lean mixing conditions, the pressure and heat release rate in the cylinder decreased with all test fuels. The addition of tetrahydrofuran to the reference n-heptane fuel enabled the combustion processes to be controlled. The maximum indicated thermal efficiency was obtained as 38.14 % at 1.9 lambda with THF60 fuel. Addition of tetrahydrofuran to n-heptane fuel slowed down the combustion. Thus, low temperature combustion was completed in a longer period. Under extremely lean operating conditions, hydrocarbon and carbon monoxide emissions of n-heptane-tetrahydrofuran fuel mixtures increased compared to the reference fuel. The highest pollutant emissions have been achieved with THF60 fuel. Compared to the reference fuel, hydrocarbon and carbon monoxide increased by an average of 8.3 % and 54 %.

References

  • [1] Calam, T. T. (2020). Electrochemical Oxidative Determination and Electrochemical Behavior of 4‐Nitrophenol Based on an Au Electrode Modified with Electro‐polymerized 3, 5‐Diamino‐1, 2, 4‐triazole Film. Electroanalysis, 32(1), 149-158.
  • [2] Calam, T. T. (2020). 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. Journal of the Faculty of Engineering & Architecture of Gazi University, 35(2).
  • [3] Tabanlıgil Calam, T. (2019). Analytical application of the poly (1H-1, 2, 4-triazole-3-thiol) modified gold electrode for high-sensitive voltammetric determination of catechol in tap and lake water samples. International Journal of Environmental Analytical Chemistry, 99(13), 1298-1312.
  • [4] Perera, F. (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. International journal of environmental research and public health, 15(1), 16-17pages.
  • [5] Yeşilyurt, M. K., Doğan, B., & Derviş, E. (2020). Experimental assessment of a CI engine operating with 1-pentanol/diesel fuel blends. International Journal of Automotive Science and Technology, 4(2), 70-89.
  • [6] Afsah, S., Laplante, B., & Wheeler, D. (1996). Controlling Industrial Pollution: a new paradigm. World Bank policy research working paper, (1672).
  • [7] Yilmaz, E., Solmaz, H., Polat, S., & Altin, M. (2013). Effect of the three-phase diesel emulsion fuels on engine performance and exhaust emissions. Journal of the Faculty of Engineering and Architecture of Gazi University, 28(1), 127-134.
  • [8] Uyumaz, A., Aydoğan, B., Yılmaz, E., Solmaz, H., Aksoy, F., Mutlu, İ., ... & Calam, A. (2020). Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine. Fuel, 280, 118588.
  • [9] Ardebili, S. M. S., Solmaz, H., İpci, D., Calam, A., & Mostafaei, M. (2020). A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: Applications, challenges, and global potential. Fuel, 279, 118516.
  • [10] Örs, İ., Sayın, B., & Ciniviz, M. (2020). A comparative study of ethanol and methanol addition effects on engine performance, combustion and emissions in the SI engine. Int J Automotive Sci Technol, 4(2), 59-69.
  • [11] Solmaz, H. (2020). A comparative study on the usage of fusel oil and reference fuels in an HCCI engine at different compression ratios. Fuel, 273, 117775.
  • [12] Polat, S., Solmaz, H., Uyumaz, A., Calam, A., Yılmaz, E., & Serdar Yucesu, H. (2020). An Experimental Research on the Effects of Negative Valve Overlap on Performance and Operating Range in a Homogeneous Charge Compression Ignition Engine With RON40 and RON60 Fuels. Journal of Engineering for Gas Turbines and Power, 142(5).
  • [13] Kocakulak, T., & Solmaz, H. (2020). Control of pre and post transmission parallel hybrid vehicles with fuzzy logic method and comparison with other power systems. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(4), 2269-2286.
  • [14] Solmaz, H., & Kocakulak, T. (2018, December). Buji ile Ateşlemeli Motor Kullanılan Seri Hibrit Elektrikli Bir Aracın Modellenmesi. In Proceedings on International Conference on Technology and Science.
  • [15] Kocakulak, T., & Solmaz, H. (2020). HCCI Menzil Arttırıcı Motor Kullanılan Seri Hibrit Bir Aracın Modellenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(2), 279-292.
  • [16] Yılmaz, E. (2020) A Comparative Study on the Usage of RON68 and Naphtha in an HCCI Engine. International Journal of Automotive Science and Technology, 4(2), 90-97.
  • [17] Calam, A., Aydoğan, B., & Halis, S. (2020). The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine. Fuel, 266, 117071.
  • [18] Uyumaz, A., Aydoğan, B., Calam, A., Aksoy, F., & Yılmaz, E. (2020). The effects of diisopropyl ether on combustion, performance, emissions and operating range in a HCCI engine. Fuel, 265, 116919.
  • [19] Aydoğan, B. (2020). An experimental examination of the effects of n-hexane and n-heptane fuel blends on combustion, performance and emissions characteristics in a HCCI engine. Energy, 192, 116600.
  • [20] Aydoğan, B. (2020). Combustion characteristics, performance and emissions of an acetone/n-heptane fuelled homogenous charge compression ignition (HCCI) engine. Fuel, 275, 117840.
  • [21] Parthasarathy, M., Ramkumar, S., Lalvani, J. I. J., Elumalai, P. V., Dhinesh, B., Krishnamoorthy, R., & Thiyagarajan, S. (2020). Performance analysis of HCCI engine powered by tamanu methyl ester with various inlet air temperature and exhaust gas recirculation ratios. Fuel, 282, 118833.
  • [22] Tanaka, S., Ayala, F., Keck, J. C., & Heywood, J. B. (2003). Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Combustion and flame, 132(1-2), 219-239.
  • [23] Cinar, C., Uyumaz, A., Solmaz, H., Sahin, F., Polat, S., & Yilmaz, E. (2015). Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels. Fuel Processing Technology, 130, 275-281.
  • [24] Nathan, S. S., Mallikarjuna, J. M., & Ramesh, A. (2010). An experimental study of the biogas–diesel HCCI mode of engine operation. Energy Conversion and Management, 51(7), 1347-1353.
  • [25] Onishi, S., Jo, S. H., Shoda, K., Jo, P. D., & Kato, S. (1979). Active thermo-atmosphere combustion (ATAC)—a new combustion process for internal combustion engines. SAE Transactions, 1851-1860.
  • [26] Hultqvist, A., Christensen, M., Johansson, B., Richter, M., Nygren, J., Hult, J., & Aldén, M. (2002). The HCCI combustion process in a single cycle—high-speed fuel tracer LIF and chemiluminescence imaging. SAE Transactions, 913-927.
  • [27] Agarwal, A. K., Singh, A. P., & Maurya, R. K. (2017). Evolution, challenges and path forward for low temperature combustion engines. Progress in energy and combustion science, 61, 1-56.
  • [28] Saxena, S., & Bedoya, I. D. (2013). Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits. Progress in Energy and Combustion Science, 39(5), 457-488.
  • [29] Epping, K., Aceves, S., Bechtold, R., & Dec, J. E. (2002). The potential of HCCI combustion for high efficiency and low emissions (No. 2002-01-1923). SAE Technical Paper.
  • [30] Aceves, S. M., Flowers, D. L., Martinez-Frias, J., Smith, J. R., Dibble, R., Au, M., & Girard, J. (2001). HCCI combustion: analysis and experiments (No. SAE/TPS-2001-01-2077). Lawrence Berkeley National Lab., CA (US).
  • [31] Kong, S. C., Marriott, C. D., Reitz, R. D., & Christensen, M. (2001). Modeling and experiments of HCCI engine combustion using detailed chemical kinetics with multidimensional CFD. SAE Transactions, 1007-1018.
  • [32] Calam, A. (2020). Effects of the fusel oil usage in HCCI engine on combustion, performance and emission. Fuel, 262, 116503.
  • [33] Maurya, R. K., & Agarwal, A. K. (2011). Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine. Applied Energy, 88(4), 1169-1180.
  • [34] Aroonsrisopon, T., Sohm, V., Werner, P., Foster, D. E., Morikawa, T., & Iida, M. (2002). An investigation into the effect of fuel composition on HCCI combustion characteristics. SAE Transactions, 1810-1827.
  • [35] Calam, A., Solmaz, H., Yılmaz, E., & İçingür, Y. (2019). Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy, 168, 1208-1216.
  • [36] Uyumaz, A. (2015). An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures. Energy Conversion and Management, 98, 199-207.
  • [37] Polat, S., Solmaz, H., Yılmaz, E., Calam, A., Uyumaz, A., & Yücesu, H. S. (2020). Mapping of an HCCI engine using negative valve overlap strategy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(9), 1140-1154.
  • [38] Calam, A., & İçingür, Y. (2019). Giriş havasi sicakliğinin hcci motorun yanma ve performansina etkileri. Isı Bilimi ve Tekniği Dergisi, 39(1), 69-79.
  • [39] Gan, S., Ng, H. K., & Pang, K. M. (2011). Homogeneous charge compression ignition (HCCI) combustion: implementation and effects on pollutants in direct injection diesel engines. Applied Energy, 88(3), 559-567.
  • [40] Halis, S., Nacak, Ç., Solmaz, H., Yılmaz, E., & Yücesu, H. S. (2018). HCCI Bir Motorda Oktan Sayısının Yanma Karakteristikleri Ve Motor Performansı Üzerine Etkilerinin İncelenmesi. Isi Bilimi Ve Teknigi Dergisi/Journal Of Thermal Science & Technology, 38(2).
  • [41] Dec, J. E., & Yang, Y. (2010). Boosted HCCI for high power without engine knock and with ultra-low NOx emissions-using conventional gasoline. SAE International Journal of Engines, 3(1), 750-767.
  • [42] Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: an experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125.
  • [43] Yelvington, P. E., & Green, W. H. (2003). Prediction of the knock limit and viable operating range for a homogeneous-charge compression-ignition (HCCI) engine (No. 2003-01-1092). SAE Technical paper.
  • [44] Olsson, J. O., Tunestål, P., Johansson, B., Fiveland, S., Agama, R., Willi, M., & Assanis, D. (2002). Compression ratio influence on maximum load of a natural gas fueled HCCI engine. Sae Transactions, 442-458.
  • [45] Nishi, M., Kanehara, M., & Iida, N. (2016). Assessment for innovative combustion on HCCI engine by controlling EGR ratio and engine speed. Applied Thermal Engineering, 99, 42-60.
  • [46] Ebrahimi, R., & Desmet, B. (2010). An experimental investigation on engine speed and cyclic dispersion in an HCCI engine. Fuel, 89(8), 2149-2156.
  • [47] Glewen, W. J., Wagner, R. M., Edwards, K. D., & Daw, C. S. (2009). Analysis of cyclic variability in spark-assisted HCCI combustion using a double Wiebe function. Proceedings of the Combustion Institute, 32(2), 2885-2892.
  • [48] Shahbakhti, M., & Koch, C. R. (2008). Characterizing the cyclic variability of ignition timing in a homogeneous charge compression ignition engine fuelled with n-heptane/iso-octane blend fuels. International Journal of Engine Research, 9(5), 361-397.
  • [49] Rezaei, J., Shahbakhti, M., Bahri, B., & Aziz, A. A. (2015). Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks. Applied Energy, 138, 460-473.
  • [50] Gharehghani, A. (2019). Load limits of an HCCI engine fueled with natural gas, ethanol, and methanol. Fuel, 239, 1001-1014.
  • [51] Taghavifar, H., Nemati, A., & Walther, J. H. (2019). Combustion and exergy analysis of multi-component diesel-DME-methanol blends in HCCI engine. Energy, 187, 115951.
  • [52] Polat, S. (2016). An experimental study on combustion, engine performance and exhaust emissions in a HCCI engine fuelled with diethyl ether–ethanol fuel blends. Fuel Processing Technology, 143, 140-150.
  • [53] Bendu, H., & Sivalingam, M. (2016). Experimental investigation on the effect of charge temperature on ethanol fueled HCCI combustion engine. Journal of Mechanical Science and Technology, 30(10), 4791-4799.
  • [54] Zhang, C., & Wu, H. (2016). Combustion characteristics and performance of a methanol fueled homogenous charge compression ignition (HCCI) engine. Journal of the Energy Institute, 89(3), 346-353.
  • [55] Calam, A. (2020). Study on the combustion characteristics of acetone/n-heptane blend and RON50 reference fuels in an HCCI engine at different compression ratios. Fuel, 271, 117646.
  • [56] Kanetaka, J., Asano, T., & Masamune, S. (1970). New process for production of tetrahydrofuran. Industrial & Engineering Chemistry, 62(4), 24-32.
  • [57] Nayak, J. N., Aralaguppi, M. I., Kumar Naidu, B. V., & Aminabhavi, T. M. (2004). Thermodynamic properties of water+ tetrahydrofuran and water+ 1, 4-dioxane mixtures at (303.15, 313.15, and 323.15) K. Journal of Chemical & Engineering Data, 49(3), 468-474.
  • [58] Long, J., Zhang, Q., Wang, T., Zhang, X., Xu, Y., & Ma, L. (2014). An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresource technology, 154, 10-17.
  • [59] Hazer, B. (1990). Cationic polymerization of tetrahydrofuran initiated by difunctional initiators. Synthesis of block copolymers. European polymer journal, 26(11), 1167-1170.
  • [60] Calam, A., & İçingür, Y. (2019). Hava fazlalık katsayısı ve oktan sayısı değişiminin HCCI yanma karakteristiklerine ve motor performansına etkileri. Politeknik Dergisi, 22(3), 607-618.
  • [61] Heywood, J. B. (1984). Internal combustion engines. McGraw-Hill.

Homojen Dolgulu Sıkıştırma ile Ateşlemeli Bir Motorda N-Heptan-Tetrahidrofuran Karışımlarının Yanma, Performans Ve Emisyonlara Etkisi

Year 2021, Volume: 24 Issue: 3, 1033 - 1043, 01.09.2021
https://doi.org/10.2339/politeknik.796099

Abstract

Bu çalışmada tek silindirli, port enjeksiyon sistemine sahip homojen dolgulu sıkıştırma ile ateşlemeli motor kullanılmıştır. Düşük basınçlı port enjektöründen referans n-heptan ve tetrahidrofuran-n-heptan karışım yakıtları püskürtülerek, emme ve sıkıştırma zamanı boyunca homojen bir karışım hazırlanmıştır. Silindir içi basınç, ısı dağılımı, yanma başlangıcı, CA50, yanma süresi, indike termik verim, maksimum basınç artış oranı analizi yapılmış ve hidrokarbon ve karbonmonoksit emisyonları belirlenmiştir. Aşırı fakir karışım şartlarında tüm test yakıtları ile silindir içi basınç ve ısı dağılımı azalmıştır. Referans n-heptan yakıtına tetrahidrofuran ilave edilmesi yanma süreçlerinin kontrol edilebilmesini sağlamıştır. En yüksek indike termik verim lambdanın 1.9 olduğu şartlarda TFH60 yakıtı ile %38.14 olarak kaydedilmiştir. N-heptan yakıtına tetrahidrofuran ilavesi yanmayı yavaşlatmıştır. Böylece düşük sıcaklık yanması daha uzun sürede tamamlanmıştır. Aşırı fakir çalışma şartlarında n-heptan-tetrahidrofuran yakıt karışımlarının hidrokarbon ve karbonmonoksit emisyonları referans yakıta göre artış göstermiştir. En yüksek kirletici emisyonlar THF60 yakıtı ile elde edilmiştir. Referans yakıta göre hidrokarbon ve karbonmonoksit ortalama %8.3 ve %54 oranında artmıştır.  

References

  • [1] Calam, T. T. (2020). Electrochemical Oxidative Determination and Electrochemical Behavior of 4‐Nitrophenol Based on an Au Electrode Modified with Electro‐polymerized 3, 5‐Diamino‐1, 2, 4‐triazole Film. Electroanalysis, 32(1), 149-158.
  • [2] Calam, T. T. (2020). 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. Journal of the Faculty of Engineering & Architecture of Gazi University, 35(2).
  • [3] Tabanlıgil Calam, T. (2019). Analytical application of the poly (1H-1, 2, 4-triazole-3-thiol) modified gold electrode for high-sensitive voltammetric determination of catechol in tap and lake water samples. International Journal of Environmental Analytical Chemistry, 99(13), 1298-1312.
  • [4] Perera, F. (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. International journal of environmental research and public health, 15(1), 16-17pages.
  • [5] Yeşilyurt, M. K., Doğan, B., & Derviş, E. (2020). Experimental assessment of a CI engine operating with 1-pentanol/diesel fuel blends. International Journal of Automotive Science and Technology, 4(2), 70-89.
  • [6] Afsah, S., Laplante, B., & Wheeler, D. (1996). Controlling Industrial Pollution: a new paradigm. World Bank policy research working paper, (1672).
  • [7] Yilmaz, E., Solmaz, H., Polat, S., & Altin, M. (2013). Effect of the three-phase diesel emulsion fuels on engine performance and exhaust emissions. Journal of the Faculty of Engineering and Architecture of Gazi University, 28(1), 127-134.
  • [8] Uyumaz, A., Aydoğan, B., Yılmaz, E., Solmaz, H., Aksoy, F., Mutlu, İ., ... & Calam, A. (2020). Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine. Fuel, 280, 118588.
  • [9] Ardebili, S. M. S., Solmaz, H., İpci, D., Calam, A., & Mostafaei, M. (2020). A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: Applications, challenges, and global potential. Fuel, 279, 118516.
  • [10] Örs, İ., Sayın, B., & Ciniviz, M. (2020). A comparative study of ethanol and methanol addition effects on engine performance, combustion and emissions in the SI engine. Int J Automotive Sci Technol, 4(2), 59-69.
  • [11] Solmaz, H. (2020). A comparative study on the usage of fusel oil and reference fuels in an HCCI engine at different compression ratios. Fuel, 273, 117775.
  • [12] Polat, S., Solmaz, H., Uyumaz, A., Calam, A., Yılmaz, E., & Serdar Yucesu, H. (2020). An Experimental Research on the Effects of Negative Valve Overlap on Performance and Operating Range in a Homogeneous Charge Compression Ignition Engine With RON40 and RON60 Fuels. Journal of Engineering for Gas Turbines and Power, 142(5).
  • [13] Kocakulak, T., & Solmaz, H. (2020). Control of pre and post transmission parallel hybrid vehicles with fuzzy logic method and comparison with other power systems. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(4), 2269-2286.
  • [14] Solmaz, H., & Kocakulak, T. (2018, December). Buji ile Ateşlemeli Motor Kullanılan Seri Hibrit Elektrikli Bir Aracın Modellenmesi. In Proceedings on International Conference on Technology and Science.
  • [15] Kocakulak, T., & Solmaz, H. (2020). HCCI Menzil Arttırıcı Motor Kullanılan Seri Hibrit Bir Aracın Modellenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(2), 279-292.
  • [16] Yılmaz, E. (2020) A Comparative Study on the Usage of RON68 and Naphtha in an HCCI Engine. International Journal of Automotive Science and Technology, 4(2), 90-97.
  • [17] Calam, A., Aydoğan, B., & Halis, S. (2020). The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine. Fuel, 266, 117071.
  • [18] Uyumaz, A., Aydoğan, B., Calam, A., Aksoy, F., & Yılmaz, E. (2020). The effects of diisopropyl ether on combustion, performance, emissions and operating range in a HCCI engine. Fuel, 265, 116919.
  • [19] Aydoğan, B. (2020). An experimental examination of the effects of n-hexane and n-heptane fuel blends on combustion, performance and emissions characteristics in a HCCI engine. Energy, 192, 116600.
  • [20] Aydoğan, B. (2020). Combustion characteristics, performance and emissions of an acetone/n-heptane fuelled homogenous charge compression ignition (HCCI) engine. Fuel, 275, 117840.
  • [21] Parthasarathy, M., Ramkumar, S., Lalvani, J. I. J., Elumalai, P. V., Dhinesh, B., Krishnamoorthy, R., & Thiyagarajan, S. (2020). Performance analysis of HCCI engine powered by tamanu methyl ester with various inlet air temperature and exhaust gas recirculation ratios. Fuel, 282, 118833.
  • [22] Tanaka, S., Ayala, F., Keck, J. C., & Heywood, J. B. (2003). Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Combustion and flame, 132(1-2), 219-239.
  • [23] Cinar, C., Uyumaz, A., Solmaz, H., Sahin, F., Polat, S., & Yilmaz, E. (2015). Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels. Fuel Processing Technology, 130, 275-281.
  • [24] Nathan, S. S., Mallikarjuna, J. M., & Ramesh, A. (2010). An experimental study of the biogas–diesel HCCI mode of engine operation. Energy Conversion and Management, 51(7), 1347-1353.
  • [25] Onishi, S., Jo, S. H., Shoda, K., Jo, P. D., & Kato, S. (1979). Active thermo-atmosphere combustion (ATAC)—a new combustion process for internal combustion engines. SAE Transactions, 1851-1860.
  • [26] Hultqvist, A., Christensen, M., Johansson, B., Richter, M., Nygren, J., Hult, J., & Aldén, M. (2002). The HCCI combustion process in a single cycle—high-speed fuel tracer LIF and chemiluminescence imaging. SAE Transactions, 913-927.
  • [27] Agarwal, A. K., Singh, A. P., & Maurya, R. K. (2017). Evolution, challenges and path forward for low temperature combustion engines. Progress in energy and combustion science, 61, 1-56.
  • [28] Saxena, S., & Bedoya, I. D. (2013). Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits. Progress in Energy and Combustion Science, 39(5), 457-488.
  • [29] Epping, K., Aceves, S., Bechtold, R., & Dec, J. E. (2002). The potential of HCCI combustion for high efficiency and low emissions (No. 2002-01-1923). SAE Technical Paper.
  • [30] Aceves, S. M., Flowers, D. L., Martinez-Frias, J., Smith, J. R., Dibble, R., Au, M., & Girard, J. (2001). HCCI combustion: analysis and experiments (No. SAE/TPS-2001-01-2077). Lawrence Berkeley National Lab., CA (US).
  • [31] Kong, S. C., Marriott, C. D., Reitz, R. D., & Christensen, M. (2001). Modeling and experiments of HCCI engine combustion using detailed chemical kinetics with multidimensional CFD. SAE Transactions, 1007-1018.
  • [32] Calam, A. (2020). Effects of the fusel oil usage in HCCI engine on combustion, performance and emission. Fuel, 262, 116503.
  • [33] Maurya, R. K., & Agarwal, A. K. (2011). Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine. Applied Energy, 88(4), 1169-1180.
  • [34] Aroonsrisopon, T., Sohm, V., Werner, P., Foster, D. E., Morikawa, T., & Iida, M. (2002). An investigation into the effect of fuel composition on HCCI combustion characteristics. SAE Transactions, 1810-1827.
  • [35] Calam, A., Solmaz, H., Yılmaz, E., & İçingür, Y. (2019). Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy, 168, 1208-1216.
  • [36] Uyumaz, A. (2015). An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures. Energy Conversion and Management, 98, 199-207.
  • [37] Polat, S., Solmaz, H., Yılmaz, E., Calam, A., Uyumaz, A., & Yücesu, H. S. (2020). Mapping of an HCCI engine using negative valve overlap strategy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(9), 1140-1154.
  • [38] Calam, A., & İçingür, Y. (2019). Giriş havasi sicakliğinin hcci motorun yanma ve performansina etkileri. Isı Bilimi ve Tekniği Dergisi, 39(1), 69-79.
  • [39] Gan, S., Ng, H. K., & Pang, K. M. (2011). Homogeneous charge compression ignition (HCCI) combustion: implementation and effects on pollutants in direct injection diesel engines. Applied Energy, 88(3), 559-567.
  • [40] Halis, S., Nacak, Ç., Solmaz, H., Yılmaz, E., & Yücesu, H. S. (2018). HCCI Bir Motorda Oktan Sayısının Yanma Karakteristikleri Ve Motor Performansı Üzerine Etkilerinin İncelenmesi. Isi Bilimi Ve Teknigi Dergisi/Journal Of Thermal Science & Technology, 38(2).
  • [41] Dec, J. E., & Yang, Y. (2010). Boosted HCCI for high power without engine knock and with ultra-low NOx emissions-using conventional gasoline. SAE International Journal of Engines, 3(1), 750-767.
  • [42] Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: an experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125.
  • [43] Yelvington, P. E., & Green, W. H. (2003). Prediction of the knock limit and viable operating range for a homogeneous-charge compression-ignition (HCCI) engine (No. 2003-01-1092). SAE Technical paper.
  • [44] Olsson, J. O., Tunestål, P., Johansson, B., Fiveland, S., Agama, R., Willi, M., & Assanis, D. (2002). Compression ratio influence on maximum load of a natural gas fueled HCCI engine. Sae Transactions, 442-458.
  • [45] Nishi, M., Kanehara, M., & Iida, N. (2016). Assessment for innovative combustion on HCCI engine by controlling EGR ratio and engine speed. Applied Thermal Engineering, 99, 42-60.
  • [46] Ebrahimi, R., & Desmet, B. (2010). An experimental investigation on engine speed and cyclic dispersion in an HCCI engine. Fuel, 89(8), 2149-2156.
  • [47] Glewen, W. J., Wagner, R. M., Edwards, K. D., & Daw, C. S. (2009). Analysis of cyclic variability in spark-assisted HCCI combustion using a double Wiebe function. Proceedings of the Combustion Institute, 32(2), 2885-2892.
  • [48] Shahbakhti, M., & Koch, C. R. (2008). Characterizing the cyclic variability of ignition timing in a homogeneous charge compression ignition engine fuelled with n-heptane/iso-octane blend fuels. International Journal of Engine Research, 9(5), 361-397.
  • [49] Rezaei, J., Shahbakhti, M., Bahri, B., & Aziz, A. A. (2015). Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks. Applied Energy, 138, 460-473.
  • [50] Gharehghani, A. (2019). Load limits of an HCCI engine fueled with natural gas, ethanol, and methanol. Fuel, 239, 1001-1014.
  • [51] Taghavifar, H., Nemati, A., & Walther, J. H. (2019). Combustion and exergy analysis of multi-component diesel-DME-methanol blends in HCCI engine. Energy, 187, 115951.
  • [52] Polat, S. (2016). An experimental study on combustion, engine performance and exhaust emissions in a HCCI engine fuelled with diethyl ether–ethanol fuel blends. Fuel Processing Technology, 143, 140-150.
  • [53] Bendu, H., & Sivalingam, M. (2016). Experimental investigation on the effect of charge temperature on ethanol fueled HCCI combustion engine. Journal of Mechanical Science and Technology, 30(10), 4791-4799.
  • [54] Zhang, C., & Wu, H. (2016). Combustion characteristics and performance of a methanol fueled homogenous charge compression ignition (HCCI) engine. Journal of the Energy Institute, 89(3), 346-353.
  • [55] Calam, A. (2020). Study on the combustion characteristics of acetone/n-heptane blend and RON50 reference fuels in an HCCI engine at different compression ratios. Fuel, 271, 117646.
  • [56] Kanetaka, J., Asano, T., & Masamune, S. (1970). New process for production of tetrahydrofuran. Industrial & Engineering Chemistry, 62(4), 24-32.
  • [57] Nayak, J. N., Aralaguppi, M. I., Kumar Naidu, B. V., & Aminabhavi, T. M. (2004). Thermodynamic properties of water+ tetrahydrofuran and water+ 1, 4-dioxane mixtures at (303.15, 313.15, and 323.15) K. Journal of Chemical & Engineering Data, 49(3), 468-474.
  • [58] Long, J., Zhang, Q., Wang, T., Zhang, X., Xu, Y., & Ma, L. (2014). An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresource technology, 154, 10-17.
  • [59] Hazer, B. (1990). Cationic polymerization of tetrahydrofuran initiated by difunctional initiators. Synthesis of block copolymers. European polymer journal, 26(11), 1167-1170.
  • [60] Calam, A., & İçingür, Y. (2019). Hava fazlalık katsayısı ve oktan sayısı değişiminin HCCI yanma karakteristiklerine ve motor performansına etkileri. Politeknik Dergisi, 22(3), 607-618.
  • [61] Heywood, J. B. (1984). Internal combustion engines. McGraw-Hill.
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Alper Calam 0000-0003-4125-2127

Publication Date September 1, 2021
Submission Date September 16, 2020
Published in Issue Year 2021 Volume: 24 Issue: 3

Cite

APA Calam, A. (2021). Homojen Dolgulu Sıkıştırma ile Ateşlemeli Bir Motorda N-Heptan-Tetrahidrofuran Karışımlarının Yanma, Performans Ve Emisyonlara Etkisi. Politeknik Dergisi, 24(3), 1033-1043. https://doi.org/10.2339/politeknik.796099
AMA Calam A. Homojen Dolgulu Sıkıştırma ile Ateşlemeli Bir Motorda N-Heptan-Tetrahidrofuran Karışımlarının Yanma, Performans Ve Emisyonlara Etkisi. Politeknik Dergisi. September 2021;24(3):1033-1043. doi:10.2339/politeknik.796099
Chicago Calam, Alper. “Homojen Dolgulu Sıkıştırma Ile Ateşlemeli Bir Motorda N-Heptan-Tetrahidrofuran Karışımlarının Yanma, Performans Ve Emisyonlara Etkisi”. Politeknik Dergisi 24, no. 3 (September 2021): 1033-43. https://doi.org/10.2339/politeknik.796099.
EndNote Calam A (September 1, 2021) Homojen Dolgulu Sıkıştırma ile Ateşlemeli Bir Motorda N-Heptan-Tetrahidrofuran Karışımlarının Yanma, Performans Ve Emisyonlara Etkisi. Politeknik Dergisi 24 3 1033–1043.
IEEE A. Calam, “Homojen Dolgulu Sıkıştırma ile Ateşlemeli Bir Motorda N-Heptan-Tetrahidrofuran Karışımlarının Yanma, Performans Ve Emisyonlara Etkisi”, Politeknik Dergisi, vol. 24, no. 3, pp. 1033–1043, 2021, doi: 10.2339/politeknik.796099.
ISNAD Calam, Alper. “Homojen Dolgulu Sıkıştırma Ile Ateşlemeli Bir Motorda N-Heptan-Tetrahidrofuran Karışımlarının Yanma, Performans Ve Emisyonlara Etkisi”. Politeknik Dergisi 24/3 (September 2021), 1033-1043. https://doi.org/10.2339/politeknik.796099.
JAMA Calam A. Homojen Dolgulu Sıkıştırma ile Ateşlemeli Bir Motorda N-Heptan-Tetrahidrofuran Karışımlarının Yanma, Performans Ve Emisyonlara Etkisi. Politeknik Dergisi. 2021;24:1033–1043.
MLA Calam, Alper. “Homojen Dolgulu Sıkıştırma Ile Ateşlemeli Bir Motorda N-Heptan-Tetrahidrofuran Karışımlarının Yanma, Performans Ve Emisyonlara Etkisi”. Politeknik Dergisi, vol. 24, no. 3, 2021, pp. 1033-4, doi:10.2339/politeknik.796099.
Vancouver Calam A. Homojen Dolgulu Sıkıştırma ile Ateşlemeli Bir Motorda N-Heptan-Tetrahidrofuran Karışımlarının Yanma, Performans Ve Emisyonlara Etkisi. Politeknik Dergisi. 2021;24(3):1033-4.