Research Article
BibTex RIS Cite

Fiber Optic Sensor Design and Prototyping for Humidity Detection in Biogas Reactors

Year 2021, Volume: 24 Issue: 4, 1623 - 1627, 01.12.2021
https://doi.org/10.2339/politeknik.904631

Abstract

In biogas reactors, it is vital to monitor the condensation of water vapor with increasing humidity. The use of fiber optic-based sensors that allow this control to be done online quickly and reliably facilitates the process. In this study, a fiber-optic water vapor and condensation sensor was designed and implemented for biogas reactors. It enables the detection of water due to water vapor and condensation that will increase humidity level based on the combination of fiber reflection losses and longitudinal alignment losses. By creating a very low-cost sensor mechanism that can react quickly and is not affected by environmental variables other than the parameter to be detected, the increasing water vapor and the initial moment of the condensation can be detected with high precision and speed.  

Thanks

The authors thank to TÜBİTAK for supporting the R&D and innovation project.

References

  • [1] Ascorbe, J., Corres, J. M., Arregui, F. J., & Matias, I. R., “Recent developments in fiber optics humidity sensors”, Sensors, 17(4): 893, (2017).
  • [2] Udd, E., Spillman Jr, W. B., “Fiber Optic Sensors: An Introduction for Engineers and Scientists”, John Wiley & Sons, 498, (2011).
  • [3] Estella, J., de Vicente, P., Echeverría, J. C., & Garrido, J. J., “A fibre-optic humidity sensor based on a porous silica xerogel film as the sensing element”, Sensors and Actuators B: Chemical, 149(1): 122-128, (2010).
  • [4] Zhao, Z., & Duan, Y., “A low cost fiber-optic humidity sensor based on silica sol–gel film”, Sensors and Actuators B: Chemical, 160(1): 1340-1345, (2011).
  • [5] Xu, W., Huang, W. B., Huang, X. G., & Yu, C. Y., “A simple fiber-optic humidity sensor based on extrinsic Fabry–Perot cavity constructed by cellulose acetate butyrate film”, Optical Fiber Technology, 19(6): 583-586, (2013).
  • [6] Huang, Y., Zhu, W., Li, Z., Chen, G., Chen, L., Zhou, J., ... & Yu, J., “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film”, Sensors and Actuators B: Chemical, 255: 57-69, (2018).
  • [7] Chen, M. Q., Zhao, Y., Wei, H. M., Zhu, C. L., & Krishnaswamy, S., “3D printed castle style Fabry-Perot microcavity on optical fiber tip as a highly sensitive humidity sensor”, Sensors and Actuators B: Chemical, 328: 128981, (2021).
  • [8] Li, X., Shao, Y., Yu, Y., Zhang, Y., & Wei, S., “A highly sensitive fiber-optic Fabry–Perot interferometer based on internal reflection mirrors for refractive index measurement”, Sensors, 16(6): 794, (2016).
  • [9] Wang, B., Tian, J., Hu, L., & Yao, Y., “High sensitivity humidity fiber-optic sensor based on all-agar Fabry–Perot interferometer”, IEEE Sensors Journal, 18(12): 4879-4885, (2018).
  • [10] Limodehi, H. E., & Légaré, F., “Fiber optic humidity sensor using water vapor condensation”, Optics express, 25(13): 15313-15321, (2017).
  • [11] Correia, S. F., Antunes, P., Pecoraro, E., Lima, P. P., Varum, H., Carlos, L. D., ... & André, P. S., “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating”, Sensors, 12(7): 8847-8860, (2012).
  • [12] Shrivastav, A. M., Gunawardena, D. S., Liu, Z., & Tam, H. Y., “Microstructured optical fiber based Fabry–Pérot interferometer as a humidity sensor utilizing chitosan polymeric matrix for breath monitoring”, Scientific reports, 10(1): 1-10, (2020).
  • [13] Özsoy, S., “Fiber optic”, Birsen Yayınevi, (2009).
  • [14] A. Weinert, “Plastic Optical Fibers: Principles, Components, Installation”, Berlin, Germany: Springer-Verlag, 37–45, (1999).
  • [15] Bass, M., & Van Stryland, E. W., “Fiber Optics Handbook: fiber, devices, and systems for optical communications”, (No. Sirsi) i9780071386234), Optical Society of America, (2002).
  • [16] Golnabi, H., “Using three different optical fiber designs to study humidity effect on the air refractive index”, Optics and Lasers in Engineering, 50(11): 1495-1500, 2012.

Biyogaz Reaktörlerinde Nem Tespiti İçin Fiber Optik Sensör Tasarimi ve Prototip Çalişmasi

Year 2021, Volume: 24 Issue: 4, 1623 - 1627, 01.12.2021
https://doi.org/10.2339/politeknik.904631

Abstract

Biyogaz reaktörlerinde, artan nem ile su buharının yoğunlaşmasının izlenmesi hayati önem taşır. Bu kontrolün çevrimiçi olarak hızlı ve güvenilir bir şekilde yapılmasına izin veren fiber optik tabanlı sensörlerin kullanılması, süreci kolaylaştırır. Buna göre bu çalışmada, biyogaz reaktörleri için fiber optik su buharı ve yoğunlaşma sensörü tasarlanmış ve uygulaması yapılmıştır. Fiber yansıma ve boyuna hizalama kayıplarına bağlı olarak nem seviyesinin artması ile oluşacak su buharı ve yoğunlaşması algılanabilmiştir. Hızlı tepki verebilen ve tespit edilecek parametre dışındaki çevresel değişkenlerden etkilenmeyen çok düşük maliyetli bir sensör mekanizması oluşturularak, artan su buharı ve yoğunlaşmanın başlangıç anı yüksek hassasiyet ve hızla tespit edilebileceği gösterilmiştir.

References

  • [1] Ascorbe, J., Corres, J. M., Arregui, F. J., & Matias, I. R., “Recent developments in fiber optics humidity sensors”, Sensors, 17(4): 893, (2017).
  • [2] Udd, E., Spillman Jr, W. B., “Fiber Optic Sensors: An Introduction for Engineers and Scientists”, John Wiley & Sons, 498, (2011).
  • [3] Estella, J., de Vicente, P., Echeverría, J. C., & Garrido, J. J., “A fibre-optic humidity sensor based on a porous silica xerogel film as the sensing element”, Sensors and Actuators B: Chemical, 149(1): 122-128, (2010).
  • [4] Zhao, Z., & Duan, Y., “A low cost fiber-optic humidity sensor based on silica sol–gel film”, Sensors and Actuators B: Chemical, 160(1): 1340-1345, (2011).
  • [5] Xu, W., Huang, W. B., Huang, X. G., & Yu, C. Y., “A simple fiber-optic humidity sensor based on extrinsic Fabry–Perot cavity constructed by cellulose acetate butyrate film”, Optical Fiber Technology, 19(6): 583-586, (2013).
  • [6] Huang, Y., Zhu, W., Li, Z., Chen, G., Chen, L., Zhou, J., ... & Yu, J., “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film”, Sensors and Actuators B: Chemical, 255: 57-69, (2018).
  • [7] Chen, M. Q., Zhao, Y., Wei, H. M., Zhu, C. L., & Krishnaswamy, S., “3D printed castle style Fabry-Perot microcavity on optical fiber tip as a highly sensitive humidity sensor”, Sensors and Actuators B: Chemical, 328: 128981, (2021).
  • [8] Li, X., Shao, Y., Yu, Y., Zhang, Y., & Wei, S., “A highly sensitive fiber-optic Fabry–Perot interferometer based on internal reflection mirrors for refractive index measurement”, Sensors, 16(6): 794, (2016).
  • [9] Wang, B., Tian, J., Hu, L., & Yao, Y., “High sensitivity humidity fiber-optic sensor based on all-agar Fabry–Perot interferometer”, IEEE Sensors Journal, 18(12): 4879-4885, (2018).
  • [10] Limodehi, H. E., & Légaré, F., “Fiber optic humidity sensor using water vapor condensation”, Optics express, 25(13): 15313-15321, (2017).
  • [11] Correia, S. F., Antunes, P., Pecoraro, E., Lima, P. P., Varum, H., Carlos, L. D., ... & André, P. S., “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating”, Sensors, 12(7): 8847-8860, (2012).
  • [12] Shrivastav, A. M., Gunawardena, D. S., Liu, Z., & Tam, H. Y., “Microstructured optical fiber based Fabry–Pérot interferometer as a humidity sensor utilizing chitosan polymeric matrix for breath monitoring”, Scientific reports, 10(1): 1-10, (2020).
  • [13] Özsoy, S., “Fiber optic”, Birsen Yayınevi, (2009).
  • [14] A. Weinert, “Plastic Optical Fibers: Principles, Components, Installation”, Berlin, Germany: Springer-Verlag, 37–45, (1999).
  • [15] Bass, M., & Van Stryland, E. W., “Fiber Optics Handbook: fiber, devices, and systems for optical communications”, (No. Sirsi) i9780071386234), Optical Society of America, (2002).
  • [16] Golnabi, H., “Using three different optical fiber designs to study humidity effect on the air refractive index”, Optics and Lasers in Engineering, 50(11): 1495-1500, 2012.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Murat Şahin 0000-0003-1478-3221

Şekip Esat Hayber 0000-0003-0062-3817

Publication Date December 1, 2021
Submission Date March 28, 2021
Published in Issue Year 2021 Volume: 24 Issue: 4

Cite

APA Şahin, M., & Hayber, Ş. E. (2021). Fiber Optic Sensor Design and Prototyping for Humidity Detection in Biogas Reactors. Politeknik Dergisi, 24(4), 1623-1627. https://doi.org/10.2339/politeknik.904631
AMA Şahin M, Hayber ŞE. Fiber Optic Sensor Design and Prototyping for Humidity Detection in Biogas Reactors. Politeknik Dergisi. December 2021;24(4):1623-1627. doi:10.2339/politeknik.904631
Chicago Şahin, Murat, and Şekip Esat Hayber. “Fiber Optic Sensor Design and Prototyping for Humidity Detection in Biogas Reactors”. Politeknik Dergisi 24, no. 4 (December 2021): 1623-27. https://doi.org/10.2339/politeknik.904631.
EndNote Şahin M, Hayber ŞE (December 1, 2021) Fiber Optic Sensor Design and Prototyping for Humidity Detection in Biogas Reactors. Politeknik Dergisi 24 4 1623–1627.
IEEE M. Şahin and Ş. E. Hayber, “Fiber Optic Sensor Design and Prototyping for Humidity Detection in Biogas Reactors”, Politeknik Dergisi, vol. 24, no. 4, pp. 1623–1627, 2021, doi: 10.2339/politeknik.904631.
ISNAD Şahin, Murat - Hayber, Şekip Esat. “Fiber Optic Sensor Design and Prototyping for Humidity Detection in Biogas Reactors”. Politeknik Dergisi 24/4 (December 2021), 1623-1627. https://doi.org/10.2339/politeknik.904631.
JAMA Şahin M, Hayber ŞE. Fiber Optic Sensor Design and Prototyping for Humidity Detection in Biogas Reactors. Politeknik Dergisi. 2021;24:1623–1627.
MLA Şahin, Murat and Şekip Esat Hayber. “Fiber Optic Sensor Design and Prototyping for Humidity Detection in Biogas Reactors”. Politeknik Dergisi, vol. 24, no. 4, 2021, pp. 1623-7, doi:10.2339/politeknik.904631.
Vancouver Şahin M, Hayber ŞE. Fiber Optic Sensor Design and Prototyping for Humidity Detection in Biogas Reactors. Politeknik Dergisi. 2021;24(4):1623-7.