Research Article
BibTex RIS Cite

Determination of Subsurface Thermoelastic Contact Stresses in a Half-Plane Using Temperature Dependent Properties

Year 2022, Volume: 25 Issue: 1, 257 - 272, 01.03.2022
https://doi.org/10.2339/politeknik.667386

Abstract

Contact mechanics problem between a rigid punch and a homogenous half-plane is examined considering frictional heat generation. Friction between the sliding rigid punch and the surface of the half-plane leads to a frictional heat which directly flows towards the half-plane material without a loss, and it changes the material’s thermoelastic properties. Calculation of subsurface stresses is crucial in the aspect of mechanical design of components since most of failures arise from fatigue and fracture at regions where subsurface stresses reach higher levels. In order to solve the problem, an iterative algorithm is developed based on the finite element method. Steady state subsurface contact stresses are obtained once the frictional heat on the contact surface reaches equilibrium. Subsurface stresses are calculated for different values of punch sliding velocity and coefficient of friction. It is observed that difference between subsurface contact stresses calculated based on temperature dependent and temperature independent properties is remarkable. Higher values of punch velocity and coefficient of friction leads to greater amount of heat generation, and percent difference between stresses reaches significant level especially near the contact surface. The utilization of temperature dependent material properties provides better approximation in assessing fatigue and fracture behavior of machine parts subjected to frictional contact with heat generation.

References

  • [1] Hertz H., “On the contact of elastic solids”, Journal für die Reine und Angewandte Mathematik, 92: 156-171, (1881).
  • [2] Johnson K.L., “Contact mechanics”, Cambridge: Cambridge University Press, UK, (1985).
  • [3] Jaeger J. C., “Moving sources of heat and the temperature of sliding contacts”, Proceedings of The Royal Society of NSW, 76: 203–24 Part III, (1942).
  • [4] Barber J.R., “Some thermoelastic contact problems involving frictional heating”, Journal of Applied Mathematics and Mechanics, XXIX(1): 1–13, (1976).
  • [5] Dundurs J. and Comninou M., “Green's functions for planar thermoelastic contact problems – exterior contact”, Mechanics Research Communications, 6(5): 309–16, (1979).
  • [6] Comninou M. and Dundurs J., “On lack of uniqueness in heat conduction through a solid to solid contact”, Journal of Heat Transfer, 102: 319-323, (1980).
  • [7] Comninou M., Dundurs J., Barber J.R., “Planar Hertz contact with heat conduction”, Journal of Applied Mechanics, 48: 549-554, (1981).
  • [8] Comninou M., Barber, J.R., Dundurs, J., “Heat conduction through a flat punch”, Journal of Applied Mechanics, 48:871-875, (1981).
  • [9] Dundurs J. and Comninou M., “Green’s function for planar thermoelastic contact problems - -interior contact”, Mechanics Research Communications, 6: 317-321, (1979).
  • [10] Barber, J.R. and Martin-Moran, C.J., “Green’s functions for transient thermoelastic contact problems for the half-plane”, Wear, 79: 11-19, (1982).
  • [11] Hills, D.A. and Barber J.R., “Steady motion of an insulating rigid flat –ended punch over a thermally conducting half-plane”, Wear, 102: 15-22, (1985).
  • [12] Kulchytsky-Zhyhailo R.D. and Yevtushenko A.A., “Approximate method for analysis of the contact temperature and pressure due to frictional load in an elastic layered medium”, International Journal of Solids and Structures, 35: 319-329, (1998).
  • [13] Chao C.-K. and Gao B., “Rigid stamp indentation for a thermoelastic half-plane”, International Journal of Solids and Structures, 37: 4635-4654, (2000).
  • [14] Matysiak J. and Yevtushenko A.A., “On heating problems of friction”, Journal of Theoretical and Applied Mechanics, 3:39, (2001).
  • [15] Guler M.A. and Erdogan F., “Contact mechanics of graded coatings”, International Journal of Solids and Structures, 41: 3865-3889, (2004).
  • [16] Guler M.A. and Erdogan F., “The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings”, International Journal of Mechanical Sciences, 49: 161-182, (2007).
  • [17] Dag S. and Erdogan F., “A surface crack in a graded medium loaded by a sliding rigid stamp”, Engineering Fracture Mechanics, 69:1729-1751, (2002).
  • [18] Ke L.L. and Wang Y.S., “Two-dimensional contact mechanics of functionally graded materials with arbitrary variations of material properties”, International Journal of Solids and Structures, 43: 5779-5798, (2006).
  • [19] Ke L.L. and Wang Y.S., “Two-dimensional sliding frictional contact of functionally graded materials”, European Journal of Mechanics-A/Solids, 26: 171-188, (2007).
  • [20] Shi X., Adachi A., Kida K., “Subsurface stress distribution and failure of PPS thrust bearings under rolling contact fatigue in water”, Key Engineering Materials, 814: 152-156, (2019).
  • [21] Liu J., Li X., Shi Z., “An investigation of contact characteristics of a roller bearing with a subsurface crack”, Engineering Failure Analysis, 116: 104744, (2020).
  • [22] Elsharkawy A.A., “Effect of friction on subsurface stresses in sliding line contact of multilayered elastic solids”, International Journal of Solids and Structures, 36: 3903-3915, (1999).
  • [23] Chidlow S.J., Teodorescu M., Vaughan N.D., “A solution method for the sub-surface stresses and local deflection of a semi-infinite inhomogeneous elastic medium”, Applied Mathematical Modelling, 36: 3486-3501, (2012).
  • [24] Savolainen M. and Lehtovaara A., “An approach to investigating subsurface fatigue in a rolling/sliding contact”, International Journal of Fatigue, 117: 180-188, (2018).
  • [25] Ali F., “Numerical study on subsurface stress in Hertzian contacts under pure sliding conditions”, Journal of Applied and Computational Mechanics, 6(SI): 1098-1106, (2020).
  • [26] Arslan O., “Computational contact mechanics analysis of laterally graded orthotropic half-planes”, World Journal of Engineering, 14/2: 145-154, (2017).
  • [27] Liu J., Ke L.L, Wang Y.S., “Two-dimensional thermoelastic contact problem of functionally graded materials involving frictional heating”, International Journal of Solids and Structures, 48(18): 2536-2548, (2011).
  • [28] Chen P. and Chen S., “Thermo mechanical contact behavior of a finite graded layer under a sliding punch with heat generation”, International Journal of Solids and Structures, 50(7-8): 1108-1119, (2013).
  • [29] Barik S.P., Kanoria, M., Chaudhuri P.A., “Steady state thermoelastic contact problem in a functionally graded material”, International Journal of Engineering Science, 46: 775-789, (2005).
  • [30] Choi H.J. and Paulino G.H., “Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system with frictional heat generation”, Journal of the Mechanics and Physics of Solids, 56: 1673-1692, (2008).
  • [31] Chen Y.C., Lee S.Y., “Elastic-Plastic Wheel -Rail Thermal Contact on Corrugated Rails During Wheel Braking”, Journal of Tribology, 131: 011401-1, (2009).
  • [32] Wu Y., Wei Y., Liu Y., Duan Z., Wang L., “3-D analysis of thermal-mechanical behavior of wheel/rail sliding contact considering temperature characteristics of materials”, Applied Thermal Engineering, 115: 455-462, (2017).
  • [33] Balci M.N., Dag S., Yildirim B., “Subsurface stresses in graded coatings subjected to frictional contact with heat generation”, Journal of Thermal Stresses, 40(4): 517-534, (2017).
  • [34] Balci M.N., Yildirim B., Dag S., “Analysis of frictional contacts with heat generation considering temperature dependent properties”, International Journal of Mechanical Sciences, 101-102: 59-69, (2015).
  • [35] Ling F.F., “Surface Mechanics”, New York, John Wiley & Sons, (1973).
  • [36] Watremetz B., Baietto-Dubourg M.C., Ulbricht A.A., “2D thermo-mechanical contact simulations in a functionally graded material: A multigrid-based approach”, Tribology International, 40: 754-762, (2007).
  • [37] ANSYS Inc., ANSYS Mechanical APDL Theory Reference, v17.1, (2016).
  • [38] Apatay T., Dag S., Guler M.A., Gulgeç M., “Subsurface contact stresses in functionally graded coatings loaded by a frictional flat stamp”, Journal of the Faculty of Engineering and Architecture of Gazi University, 25(3): 611-623, (2010).
  • [39] Ootao Y., Tanigawa Y., Nakamura T., “Optimization of material composition of FGM hollow circular cylinder under thermal loading: a neural network approach”, Composites Part-B, 30: 415-422, (1999).

Bir Yarı-düzlemde Yüzeyaltı Termoelastik Temas Gerilmelerinin Sıcaklık Bağımlı Özellikler Kullanılarak Belirlenmesi

Year 2022, Volume: 25 Issue: 1, 257 - 272, 01.03.2022
https://doi.org/10.2339/politeknik.667386

Abstract

Rijit bir zımba ile homojen bir yarı-düzlem arasındaki temas mekaniği sürtünme ısı üretimi düşünülerek incelenmiştir. Kayan rijit zımba ile yarı-düzlem yüzeyi arasındaki sürtünme yarı-düzlem malzemeye doğru kayıp olmadan akan bir sürtünme ısısına yol acar, ve bu malzemenin termoelastik özelliklerini değiştirir. Yüzey altı gerilmelerin hesaplanması bileşenlerin mekanik tasarımı açısından çok önemlidir çünkü hasarların çoğu yüzey altı gerilmelerin daha yüksek seviyelere ulaştığı bölgelerdeki yorulma ve kırılmadan kaynaklanmaktadir. Problemi çözmek için sonlu elemanlar yöntemine dayanan iteratif bir algoritma geliştirilmiştir. Kararlı durum yüzey altı temas gerilmeleri temas yüzeyindeki sürtünme ısısı dengeye ulaştığında elde edilir. Yüzeyaltı temas gerilmeleri zımba kayma hızının ve sürtünme katsayısının çeşitli değerleri için elde edilmiştir. Sıcaklığa bağlı ve sıcaklıktan bağımsız özelliklere göre hesaplanan yüzey altı temas gerilmeleri arasındaki farkın dikkat çekici olduğu görülmektedir. Daha yüksek zımba hızı ve sürtünme katsayısı değerleri daha fazla miktarda ısı oluşumuna neden olur ve gerilmeler arasındaki yüzde fark özellikle temas bölgesinin yakınında önemli seviyeye ulaşır. Sıcaklığa bağlı malzeme özelliklerinin kullanılması, ısı üretimi ile sürtünme temasına maruz kalan makine parçalarının yorulma ve kırılma davranışının değerlendirilmesinde daha iyi bir yaklaşım sağlar.

References

  • [1] Hertz H., “On the contact of elastic solids”, Journal für die Reine und Angewandte Mathematik, 92: 156-171, (1881).
  • [2] Johnson K.L., “Contact mechanics”, Cambridge: Cambridge University Press, UK, (1985).
  • [3] Jaeger J. C., “Moving sources of heat and the temperature of sliding contacts”, Proceedings of The Royal Society of NSW, 76: 203–24 Part III, (1942).
  • [4] Barber J.R., “Some thermoelastic contact problems involving frictional heating”, Journal of Applied Mathematics and Mechanics, XXIX(1): 1–13, (1976).
  • [5] Dundurs J. and Comninou M., “Green's functions for planar thermoelastic contact problems – exterior contact”, Mechanics Research Communications, 6(5): 309–16, (1979).
  • [6] Comninou M. and Dundurs J., “On lack of uniqueness in heat conduction through a solid to solid contact”, Journal of Heat Transfer, 102: 319-323, (1980).
  • [7] Comninou M., Dundurs J., Barber J.R., “Planar Hertz contact with heat conduction”, Journal of Applied Mechanics, 48: 549-554, (1981).
  • [8] Comninou M., Barber, J.R., Dundurs, J., “Heat conduction through a flat punch”, Journal of Applied Mechanics, 48:871-875, (1981).
  • [9] Dundurs J. and Comninou M., “Green’s function for planar thermoelastic contact problems - -interior contact”, Mechanics Research Communications, 6: 317-321, (1979).
  • [10] Barber, J.R. and Martin-Moran, C.J., “Green’s functions for transient thermoelastic contact problems for the half-plane”, Wear, 79: 11-19, (1982).
  • [11] Hills, D.A. and Barber J.R., “Steady motion of an insulating rigid flat –ended punch over a thermally conducting half-plane”, Wear, 102: 15-22, (1985).
  • [12] Kulchytsky-Zhyhailo R.D. and Yevtushenko A.A., “Approximate method for analysis of the contact temperature and pressure due to frictional load in an elastic layered medium”, International Journal of Solids and Structures, 35: 319-329, (1998).
  • [13] Chao C.-K. and Gao B., “Rigid stamp indentation for a thermoelastic half-plane”, International Journal of Solids and Structures, 37: 4635-4654, (2000).
  • [14] Matysiak J. and Yevtushenko A.A., “On heating problems of friction”, Journal of Theoretical and Applied Mechanics, 3:39, (2001).
  • [15] Guler M.A. and Erdogan F., “Contact mechanics of graded coatings”, International Journal of Solids and Structures, 41: 3865-3889, (2004).
  • [16] Guler M.A. and Erdogan F., “The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings”, International Journal of Mechanical Sciences, 49: 161-182, (2007).
  • [17] Dag S. and Erdogan F., “A surface crack in a graded medium loaded by a sliding rigid stamp”, Engineering Fracture Mechanics, 69:1729-1751, (2002).
  • [18] Ke L.L. and Wang Y.S., “Two-dimensional contact mechanics of functionally graded materials with arbitrary variations of material properties”, International Journal of Solids and Structures, 43: 5779-5798, (2006).
  • [19] Ke L.L. and Wang Y.S., “Two-dimensional sliding frictional contact of functionally graded materials”, European Journal of Mechanics-A/Solids, 26: 171-188, (2007).
  • [20] Shi X., Adachi A., Kida K., “Subsurface stress distribution and failure of PPS thrust bearings under rolling contact fatigue in water”, Key Engineering Materials, 814: 152-156, (2019).
  • [21] Liu J., Li X., Shi Z., “An investigation of contact characteristics of a roller bearing with a subsurface crack”, Engineering Failure Analysis, 116: 104744, (2020).
  • [22] Elsharkawy A.A., “Effect of friction on subsurface stresses in sliding line contact of multilayered elastic solids”, International Journal of Solids and Structures, 36: 3903-3915, (1999).
  • [23] Chidlow S.J., Teodorescu M., Vaughan N.D., “A solution method for the sub-surface stresses and local deflection of a semi-infinite inhomogeneous elastic medium”, Applied Mathematical Modelling, 36: 3486-3501, (2012).
  • [24] Savolainen M. and Lehtovaara A., “An approach to investigating subsurface fatigue in a rolling/sliding contact”, International Journal of Fatigue, 117: 180-188, (2018).
  • [25] Ali F., “Numerical study on subsurface stress in Hertzian contacts under pure sliding conditions”, Journal of Applied and Computational Mechanics, 6(SI): 1098-1106, (2020).
  • [26] Arslan O., “Computational contact mechanics analysis of laterally graded orthotropic half-planes”, World Journal of Engineering, 14/2: 145-154, (2017).
  • [27] Liu J., Ke L.L, Wang Y.S., “Two-dimensional thermoelastic contact problem of functionally graded materials involving frictional heating”, International Journal of Solids and Structures, 48(18): 2536-2548, (2011).
  • [28] Chen P. and Chen S., “Thermo mechanical contact behavior of a finite graded layer under a sliding punch with heat generation”, International Journal of Solids and Structures, 50(7-8): 1108-1119, (2013).
  • [29] Barik S.P., Kanoria, M., Chaudhuri P.A., “Steady state thermoelastic contact problem in a functionally graded material”, International Journal of Engineering Science, 46: 775-789, (2005).
  • [30] Choi H.J. and Paulino G.H., “Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system with frictional heat generation”, Journal of the Mechanics and Physics of Solids, 56: 1673-1692, (2008).
  • [31] Chen Y.C., Lee S.Y., “Elastic-Plastic Wheel -Rail Thermal Contact on Corrugated Rails During Wheel Braking”, Journal of Tribology, 131: 011401-1, (2009).
  • [32] Wu Y., Wei Y., Liu Y., Duan Z., Wang L., “3-D analysis of thermal-mechanical behavior of wheel/rail sliding contact considering temperature characteristics of materials”, Applied Thermal Engineering, 115: 455-462, (2017).
  • [33] Balci M.N., Dag S., Yildirim B., “Subsurface stresses in graded coatings subjected to frictional contact with heat generation”, Journal of Thermal Stresses, 40(4): 517-534, (2017).
  • [34] Balci M.N., Yildirim B., Dag S., “Analysis of frictional contacts with heat generation considering temperature dependent properties”, International Journal of Mechanical Sciences, 101-102: 59-69, (2015).
  • [35] Ling F.F., “Surface Mechanics”, New York, John Wiley & Sons, (1973).
  • [36] Watremetz B., Baietto-Dubourg M.C., Ulbricht A.A., “2D thermo-mechanical contact simulations in a functionally graded material: A multigrid-based approach”, Tribology International, 40: 754-762, (2007).
  • [37] ANSYS Inc., ANSYS Mechanical APDL Theory Reference, v17.1, (2016).
  • [38] Apatay T., Dag S., Guler M.A., Gulgeç M., “Subsurface contact stresses in functionally graded coatings loaded by a frictional flat stamp”, Journal of the Faculty of Engineering and Architecture of Gazi University, 25(3): 611-623, (2010).
  • [39] Ootao Y., Tanigawa Y., Nakamura T., “Optimization of material composition of FGM hollow circular cylinder under thermal loading: a neural network approach”, Composites Part-B, 30: 415-422, (1999).
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Nurullah Balci 0000-0002-4416-6761

Publication Date March 1, 2022
Submission Date December 30, 2019
Published in Issue Year 2022 Volume: 25 Issue: 1

Cite

APA Balci, M. N. (2022). Determination of Subsurface Thermoelastic Contact Stresses in a Half-Plane Using Temperature Dependent Properties. Politeknik Dergisi, 25(1), 257-272. https://doi.org/10.2339/politeknik.667386
AMA Balci MN. Determination of Subsurface Thermoelastic Contact Stresses in a Half-Plane Using Temperature Dependent Properties. Politeknik Dergisi. March 2022;25(1):257-272. doi:10.2339/politeknik.667386
Chicago Balci, Mehmet Nurullah. “Determination of Subsurface Thermoelastic Contact Stresses in a Half-Plane Using Temperature Dependent Properties”. Politeknik Dergisi 25, no. 1 (March 2022): 257-72. https://doi.org/10.2339/politeknik.667386.
EndNote Balci MN (March 1, 2022) Determination of Subsurface Thermoelastic Contact Stresses in a Half-Plane Using Temperature Dependent Properties. Politeknik Dergisi 25 1 257–272.
IEEE M. N. Balci, “Determination of Subsurface Thermoelastic Contact Stresses in a Half-Plane Using Temperature Dependent Properties”, Politeknik Dergisi, vol. 25, no. 1, pp. 257–272, 2022, doi: 10.2339/politeknik.667386.
ISNAD Balci, Mehmet Nurullah. “Determination of Subsurface Thermoelastic Contact Stresses in a Half-Plane Using Temperature Dependent Properties”. Politeknik Dergisi 25/1 (March 2022), 257-272. https://doi.org/10.2339/politeknik.667386.
JAMA Balci MN. Determination of Subsurface Thermoelastic Contact Stresses in a Half-Plane Using Temperature Dependent Properties. Politeknik Dergisi. 2022;25:257–272.
MLA Balci, Mehmet Nurullah. “Determination of Subsurface Thermoelastic Contact Stresses in a Half-Plane Using Temperature Dependent Properties”. Politeknik Dergisi, vol. 25, no. 1, 2022, pp. 257-72, doi:10.2339/politeknik.667386.
Vancouver Balci MN. Determination of Subsurface Thermoelastic Contact Stresses in a Half-Plane Using Temperature Dependent Properties. Politeknik Dergisi. 2022;25(1):257-72.