Research Article
BibTex RIS Cite

Ultrasonik Sürücülerin Soğutulması için Termoelektrik Kendinden Soğutma Sisteminin Deneysel İncelenmesi

Year 2022, Volume: 25 Issue: 1, 169 - 175, 01.03.2022
https://doi.org/10.2339/politeknik.675379

Abstract

Elektronik sürücü devreleri ultrasonik transdüser sistemlerinin sürülmesinde kullanılır. Yüksek frekans nedeniyle, termal yönetim sürücünün güvenilirliğini önemli ölçüde etkileyen ana sorundur. Bu tür aşırı ısınma problemlerini çözmek için farklı uygulamalar üzerinde çalışılmaktadır. Bu çalışmada, push-pull sürücü devresindeki fazla ısıyı dağıtmak ve sistem performansını artırmak için bir termoelektrik kendinden soğutma sistemi tasarlanmıştır. Termoelektrik kendinden soğutma (TSC), herhangi bir ısı üreten cihazın elektrik tüketimi olmadan soğutulmasını sağlayan yeni bir termoelektrik uygulamadır. Bu makale, bir TSC sisteminin deneysel analizini sunmaktadır. Deneysel bir kurulum 275W push-pull ultrasonik sürücü devresinde tasarlanmıştır. Bu çalışmada, termoelektrik sistemin performansının farklı kalınlıklarda soğuk genişletici kullanımıyla nasıl değiştiği gösterilmiştir. 5 ve 10 mm kalınlığındaki soğuk genişleticiler, kendi kendini soğutma sisteminin hem sıcak hem de soğuk yüzeylerinin soğutma performansı üzerinde olumlu bir etkiye sahiptir. Bununla birlikte, soğuk genişleticinin kalınlığı eşik değeri geçtiğinde, soğuk genişleticinin ısı kapasitesi, soğuk ve sıcak yüzeyler arasındaki sıcaklığın fanın çalışmasını sağlayan kritik sıcaklık farklarına ulaşmasını engellemiştir.

References

  • [1] Benziger B., Anu Nair P., Balakrishnan P., “Review Paper On Thermoelectric Air-Conditioner Using Peltier Modules”, International Journal of Mechanical Engineering (IJME), 4/3: 2319-2240, (2015).
  • [2] Riffat S. B., Xiaoli M., “Thermoelectrics: a review of present and potential applications”, Appl Therm Eng, 23: 913-935, (2003).
  • [3] Von Lukowicz, Marian, Elisabeth Abbe, Tino Schmiel, and Martin Tajmar. "Thermoelectric generators on satellites—An approach for waste heat recovery in space." Energies, 9(7): (2016): 541.
  • [4] Vián J.G., Astrain D., “Development of a thermoelectric refrigerator with twophase thermosyphons and capillary lift”, Appl Therm Eng, 29: 1935-1940, (2009).
  • [5] Martinez A., Astrain D., Rodriquez A., “Experimental and Analytical Study on Thermoelectric Self Cooling of Devices”, Energy, 36: 5250-5260, (2011).
  • [6] Raut M S., Walke P V., “Thermoelectric Air Cooling for Cars”, International Journal of Engineering Science and Technology (IJEST), 4: 2381-2394, (2012).
  • [7] G Gromov, “Thermoelectric Cooling Modules”, Report from RMT Ltd, Business Briefing: Global Photonics Applications & Technology, (2002)
  • [8] Nesarajah M., Frey G., “Thermoelectric power generation: Peltier element versus thermoelectric generator”, IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society (Florence), 4252-4257, (2016).
  • [9] Yodovard P., Khedari J., Hirunlabh J., “The Potential of Waste Heat Thermoelectric Power Generation From Diesel Cycle and Gas Turbine Cogeneration Plants”, Energ Source 23: 213-224, (2001).
  • [10] Janak L., Singule, V., “Energy harvesting for aerospace: Application possibilities”, 16th IEEE International Conference on Mechatronics–Mechatronika,183–187,(2014).
  • [11] Chottirapong K., Manatrinon S., Dangsakul P., Kwankeow N., “Design of energy harvesting thermoelectric generator with wireless sensors in organic fertilizer plant”, 6th IEEE International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES),1–6, (2015).
  • [12] Leonov V., “Thermoelectric Energy Harvesting of human Body Heat for Wearable Sensors”, IEEE Sensors J, 13: 2284–2291, (2013)
  • [13] Ota T., Fujita K., Tokura S., Uematsu, K, “Development of Thermoelectric Power Generation System for Industrial Furnaces”, IEEE 25th International Conference on Thermoelectrics, 354–357, (2016).
  • [14] Liu K., Chen Y., Chen M., Test for “Thermoelectric Self Cooling”, ICCPE 2015, DOI: 10.1051/matecconf/20167105006, 71, 05006, (2016).
  • [15] Cai Y., Wang Y., Liu D., Zhao F., “Thermoelectric cooling technology applied in the field of electronic devices: Updated review on the parametric investigations and model developments”, Applied Thermal Engineering, 148: 238-255, (2019).
  • [16] Cooke D. B., “Design and Optimization of a Self-powered Thermoelectric Car Seat Cooler”, Master of Science In Mechanical Engineering of the Virginia Polytechnic Institute (2018).
  • [17] Kiflemariam R., Lin C., “Experimental investigation on heat driven self-cooling application based on thermoelectric system”, International Journal of Thermal Sciences, 109: 309-322, (2016)
  • [18] Wang P., Bar-Cohen A., “Self-Cooling on Germanium Chip”, IEEE Transactions on Components, Packaging and Manufacturing Technology. 1: 5, (2011)
  • [19] Saber H., Alshehri S., Maref W., “Performance optimization of cascaded and non-cascaded thermoelectric devices for cooling computer chips”, Energy Conversion and Management, 191: 174–192, (2019).

Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers

Year 2022, Volume: 25 Issue: 1, 169 - 175, 01.03.2022
https://doi.org/10.2339/politeknik.675379

Abstract

Electronic driver circuits are used for the driving of ultrasonic transducer systems. Due to the high frequency switching, thermal management is the main problem that has a significant effect on the reliability of the driver. Different applications are being studied to solve such overheating problems. In this study, the designed thermoelectric self-cooling system dissipates the excess heat generated in the push-pull drive circuit and improves system performance. Thermoelectric self-cooling (TSC) is a new thermoelectric application which provide the cooling of any heat-generating device without electricity consumption. This paper presents the experimental analysis of a TSC system. An experimental setup is designed on a 275W push-pull ultrasonic driver circuit. In this study, it has been shown how the performance of the thermoelectric system changes with the use of cold extender of different thicknesses. 5 and 10 mm thickness cold extenders have had a positive effect on the cooling performance of both the hot and cold surfaces of the self-cooling system. However, when the thickness of the cold extender is increased beyond the threshold, the heat capacity of the cold extender has prevented the temperature between the cold and hot surfaces to reach critical temperature differences which enables the fan to operate.

References

  • [1] Benziger B., Anu Nair P., Balakrishnan P., “Review Paper On Thermoelectric Air-Conditioner Using Peltier Modules”, International Journal of Mechanical Engineering (IJME), 4/3: 2319-2240, (2015).
  • [2] Riffat S. B., Xiaoli M., “Thermoelectrics: a review of present and potential applications”, Appl Therm Eng, 23: 913-935, (2003).
  • [3] Von Lukowicz, Marian, Elisabeth Abbe, Tino Schmiel, and Martin Tajmar. "Thermoelectric generators on satellites—An approach for waste heat recovery in space." Energies, 9(7): (2016): 541.
  • [4] Vián J.G., Astrain D., “Development of a thermoelectric refrigerator with twophase thermosyphons and capillary lift”, Appl Therm Eng, 29: 1935-1940, (2009).
  • [5] Martinez A., Astrain D., Rodriquez A., “Experimental and Analytical Study on Thermoelectric Self Cooling of Devices”, Energy, 36: 5250-5260, (2011).
  • [6] Raut M S., Walke P V., “Thermoelectric Air Cooling for Cars”, International Journal of Engineering Science and Technology (IJEST), 4: 2381-2394, (2012).
  • [7] G Gromov, “Thermoelectric Cooling Modules”, Report from RMT Ltd, Business Briefing: Global Photonics Applications & Technology, (2002)
  • [8] Nesarajah M., Frey G., “Thermoelectric power generation: Peltier element versus thermoelectric generator”, IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society (Florence), 4252-4257, (2016).
  • [9] Yodovard P., Khedari J., Hirunlabh J., “The Potential of Waste Heat Thermoelectric Power Generation From Diesel Cycle and Gas Turbine Cogeneration Plants”, Energ Source 23: 213-224, (2001).
  • [10] Janak L., Singule, V., “Energy harvesting for aerospace: Application possibilities”, 16th IEEE International Conference on Mechatronics–Mechatronika,183–187,(2014).
  • [11] Chottirapong K., Manatrinon S., Dangsakul P., Kwankeow N., “Design of energy harvesting thermoelectric generator with wireless sensors in organic fertilizer plant”, 6th IEEE International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES),1–6, (2015).
  • [12] Leonov V., “Thermoelectric Energy Harvesting of human Body Heat for Wearable Sensors”, IEEE Sensors J, 13: 2284–2291, (2013)
  • [13] Ota T., Fujita K., Tokura S., Uematsu, K, “Development of Thermoelectric Power Generation System for Industrial Furnaces”, IEEE 25th International Conference on Thermoelectrics, 354–357, (2016).
  • [14] Liu K., Chen Y., Chen M., Test for “Thermoelectric Self Cooling”, ICCPE 2015, DOI: 10.1051/matecconf/20167105006, 71, 05006, (2016).
  • [15] Cai Y., Wang Y., Liu D., Zhao F., “Thermoelectric cooling technology applied in the field of electronic devices: Updated review on the parametric investigations and model developments”, Applied Thermal Engineering, 148: 238-255, (2019).
  • [16] Cooke D. B., “Design and Optimization of a Self-powered Thermoelectric Car Seat Cooler”, Master of Science In Mechanical Engineering of the Virginia Polytechnic Institute (2018).
  • [17] Kiflemariam R., Lin C., “Experimental investigation on heat driven self-cooling application based on thermoelectric system”, International Journal of Thermal Sciences, 109: 309-322, (2016)
  • [18] Wang P., Bar-Cohen A., “Self-Cooling on Germanium Chip”, IEEE Transactions on Components, Packaging and Manufacturing Technology. 1: 5, (2011)
  • [19] Saber H., Alshehri S., Maref W., “Performance optimization of cascaded and non-cascaded thermoelectric devices for cooling computer chips”, Energy Conversion and Management, 191: 174–192, (2019).
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mert Şener 0000-0002-9343-948X

F.mertkan Arslan 0000-0001-8359-7743

Oğuz Gürses 0000-0002-2755-3452

Gökhan Gürlek 0000-0001-5324-1818

Publication Date March 1, 2022
Submission Date January 15, 2020
Published in Issue Year 2022 Volume: 25 Issue: 1

Cite

APA Şener, M., Arslan, F., Gürses, O., Gürlek, G. (2022). Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers. Politeknik Dergisi, 25(1), 169-175. https://doi.org/10.2339/politeknik.675379
AMA Şener M, Arslan F, Gürses O, Gürlek G. Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers. Politeknik Dergisi. March 2022;25(1):169-175. doi:10.2339/politeknik.675379
Chicago Şener, Mert, F.mertkan Arslan, Oğuz Gürses, and Gökhan Gürlek. “Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers”. Politeknik Dergisi 25, no. 1 (March 2022): 169-75. https://doi.org/10.2339/politeknik.675379.
EndNote Şener M, Arslan F, Gürses O, Gürlek G (March 1, 2022) Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers. Politeknik Dergisi 25 1 169–175.
IEEE M. Şener, F. Arslan, O. Gürses, and G. Gürlek, “Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers”, Politeknik Dergisi, vol. 25, no. 1, pp. 169–175, 2022, doi: 10.2339/politeknik.675379.
ISNAD Şener, Mert et al. “Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers”. Politeknik Dergisi 25/1 (March 2022), 169-175. https://doi.org/10.2339/politeknik.675379.
JAMA Şener M, Arslan F, Gürses O, Gürlek G. Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers. Politeknik Dergisi. 2022;25:169–175.
MLA Şener, Mert et al. “Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers”. Politeknik Dergisi, vol. 25, no. 1, 2022, pp. 169-75, doi:10.2339/politeknik.675379.
Vancouver Şener M, Arslan F, Gürses O, Gürlek G. Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers. Politeknik Dergisi. 2022;25(1):169-75.