Research Article
BibTex RIS Cite

Prediction and Analysis of Cutting Forces Including the Effect of Tool Runout During End Milling

Year 2022, Volume: 25 Issue: 1, 157 - 167, 01.03.2022
https://doi.org/10.2339/politeknik.693544

Abstract

In this study, a cutting force model is presented, which includes the effects of tool runout to predict cutting forces in end milling. In the model, the end mill is separated into a series of disc elements along its axis to reflect the effect of the helix angle. The cutting forces are predicted at each time interval with a mechanistic model in which the force coefficients are defined as the exponential functions of the average chip thickness. The effect of tool runout on chip load is considered based on the true path of the flutes. An in-depth analysis indicates that tool runout shifts the cutting force pattern from the tooth passing frequency to the spindle rotational one. This model is also validated with the comparison of experimental cutting forces available in the literature with those from simulation for aluminum alloy Al7075-T6, and provides a satisfactory prediction of cutting forces.

References

  • [1] Kline W.A. and DeVor R.E., “The effect of runout on cutting geometry and forces in end milling”, International Journal of Machine Tool Design and Research, 23(2–3): 123–140, (1983).
  • [2] Budak E., Altintas Y. and Armarego E.J.A., “Prediction of milling force coefficients from orthogonal cutting data”, ASME Transactions, Journal of Manufacturing Science and Engineering, 118: 216–224, (1996).
  • [3] Aydın M., Uçar M., Cengiz A. and Kurt M., “Identification of static surface form errors from cutting force distribution in flat-end milling processes”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37: 1001–1013, (2015).
  • [4] Aydın M. and Köklü U., “Identification and modeling of cutting forces in ball-end milling based on two different finite element models with Arbitrary Lagrangian Eulerian technique”, International Journal of Advanced Manufacturing Technology, 92: 1465–1480, (2017).
  • [5] Aydın M. and Köklü U., “A study of ball-end milling forces by finite element model with Lagrangian boundary of orthogonal cutting operation”, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(2): 517–527, (2018).
  • [6] Li H.Z. and Li X.P., “A numerical study of the effects of cutter runout on milling process geometry based on true tooth trajectory”, International Journal of Advanced Manufacturing Technology, 25: 435–443, (2005).
  • [7] Kumanchik L.M. and Schmitz T.L., “Improved analytical chip thickness model for milling”, Precision Engineering, 31: 317–324, (2007).
  • [8] Li H.Z., Zhang W.B. and Li X.P., “Modelling of cutting forces in helical end milling using a predictive machining theory”, International Journal of Mechanical Sciences, 43: 1711–1730, (2001).
  • [9] Oxley P.L.B., “Mechanics of machining”, Ellis Horwood Limited, Chichester, (1989).
  • [10] Li X.P. and Li H.Z., “Theoretical modelling of cutting forces in helical end milling with cutter runout”, International Journal of Mechanical Sciences, 46: 1399–1414, (2004).
  • [11] Diez E., Perez H., Guzman M. and Vizan A., “An improved methodology for the experimental evaluation of tool runout in peripheral milling”, International Journal of Advanced Manufacturing Technology, 65: 283–293, (2013).
  • [12] Sutherland J.W. and DeVor R.E., “An improved method for cutting force and surface error prediction in flexible end milling systems”, Transactions of the ASME Journal of Engineering for Industry, 108(4): 269–279, (1986).
  • [13] Hekman K. A. and Liang S.Y. “In-process monitoring of end milling cutter runout”, Mechatronics, 7: 1–10, (1997).
  • [14] Yun W.-S. and Cho D.-W., “An Improved Method for the Determination of 3D Cutting Force Coefficients and Runout Parameters in End Milling”, International Journal of Advanced Manufacturing Technology, 16: 851–858, (2000). [7]
  • [15] Rivière-Lorphèvre E. and Filippi E., “Mechanistic cutting force model parameters evaluation in milling taking cutter radial runout into account”, International Journal of Advanced Manufacturing Technology, 45: 8–15, (2009).
  • [16] Wan M., Zhang W.-H., Dang. J.-W. and Yang Y., “A novel cutting force modelling method for cylindrical end mill”, Applied Mathematical Modelling, 34: 823–836, (2010).
  • [17] Fu Z., Yang W., Wang X., Leopold J., “An analytical force model for ball-end milling based on a predictive machining theory considering cutter runout”, International Journal of Advanced Manufacturing Technology, 84, 2449–2460, (2016).
  • [18] Diez Cifuentes E., Pérez García H., Guzmán Villaseñor M., Vizán Idoipe A. “Dynamic analysis of runout correction in milling”, International Journal of Machine Tools and Manufacture, 50: 709–717 (2010).
  • [19] Aydın M. and Köklü U., “Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V Titanium Alloy”, Simulation Modelling Practice and Theory, 100: 102039, (2020).
  • [20] Altintas Y., “Manufacturing automation, metal cutting, machine tool vibration and CNC design”, Cambridge University Press, Cambridge, (2000).
  • [21] Budak E., “Analytical models for high performance milling. Part I: Cutting forces, structural deformations and tolerance integrity”, International Journal of Machine Tools and Manufacture, 46: 1478–1488, (2006).

Parmak Frezeleme Sırasında Takım Salgısının Etkisi Dahil Edilerek Kesme Kuvvetlerinin Tahmini ve Analizi

Year 2022, Volume: 25 Issue: 1, 157 - 167, 01.03.2022
https://doi.org/10.2339/politeknik.693544

Abstract

Bu çalışmada, parmak frezelemede kesme kuvvetlerini tahmin etmek için takım salgısının etkilerini içeren bir kesme kuvveti modeli sunulmuştur. Modelde, parmak freze helis açısının etkisini yansıtmak için ekseni boyunca bir dizi disk elemana ayrılmıştır. Kesme kuvvetleri, kuvvet katsayılarının ortalama talaş kalınlığının üstel fonksiyonları olarak tanımlandığı mekanistik model ile her bir zaman aralığında tahmin edilmiştir. Takım salgısının talaş yükü üzerindeki etkisi kesici kenarların gerçek yolu esas alınarak incelenmiştir. Ayrıntılı bir analiz, takım salgısının kesme kuvveti desenini diş geçiş frekansından iş mili dönme frekansına değiştirdiğini göstermektedir. Bu model, Al7075-T6 alüminyum alaşımı için literatürde bulunan deneysel kesme kuvvetlerinin benzetimden elde edilenlerle karşılaştırılmasıyla da doğrulanmış ve kesme kuvvetlerinin tatmin edici bir tahmini sağlamaktadır.

References

  • [1] Kline W.A. and DeVor R.E., “The effect of runout on cutting geometry and forces in end milling”, International Journal of Machine Tool Design and Research, 23(2–3): 123–140, (1983).
  • [2] Budak E., Altintas Y. and Armarego E.J.A., “Prediction of milling force coefficients from orthogonal cutting data”, ASME Transactions, Journal of Manufacturing Science and Engineering, 118: 216–224, (1996).
  • [3] Aydın M., Uçar M., Cengiz A. and Kurt M., “Identification of static surface form errors from cutting force distribution in flat-end milling processes”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37: 1001–1013, (2015).
  • [4] Aydın M. and Köklü U., “Identification and modeling of cutting forces in ball-end milling based on two different finite element models with Arbitrary Lagrangian Eulerian technique”, International Journal of Advanced Manufacturing Technology, 92: 1465–1480, (2017).
  • [5] Aydın M. and Köklü U., “A study of ball-end milling forces by finite element model with Lagrangian boundary of orthogonal cutting operation”, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(2): 517–527, (2018).
  • [6] Li H.Z. and Li X.P., “A numerical study of the effects of cutter runout on milling process geometry based on true tooth trajectory”, International Journal of Advanced Manufacturing Technology, 25: 435–443, (2005).
  • [7] Kumanchik L.M. and Schmitz T.L., “Improved analytical chip thickness model for milling”, Precision Engineering, 31: 317–324, (2007).
  • [8] Li H.Z., Zhang W.B. and Li X.P., “Modelling of cutting forces in helical end milling using a predictive machining theory”, International Journal of Mechanical Sciences, 43: 1711–1730, (2001).
  • [9] Oxley P.L.B., “Mechanics of machining”, Ellis Horwood Limited, Chichester, (1989).
  • [10] Li X.P. and Li H.Z., “Theoretical modelling of cutting forces in helical end milling with cutter runout”, International Journal of Mechanical Sciences, 46: 1399–1414, (2004).
  • [11] Diez E., Perez H., Guzman M. and Vizan A., “An improved methodology for the experimental evaluation of tool runout in peripheral milling”, International Journal of Advanced Manufacturing Technology, 65: 283–293, (2013).
  • [12] Sutherland J.W. and DeVor R.E., “An improved method for cutting force and surface error prediction in flexible end milling systems”, Transactions of the ASME Journal of Engineering for Industry, 108(4): 269–279, (1986).
  • [13] Hekman K. A. and Liang S.Y. “In-process monitoring of end milling cutter runout”, Mechatronics, 7: 1–10, (1997).
  • [14] Yun W.-S. and Cho D.-W., “An Improved Method for the Determination of 3D Cutting Force Coefficients and Runout Parameters in End Milling”, International Journal of Advanced Manufacturing Technology, 16: 851–858, (2000). [7]
  • [15] Rivière-Lorphèvre E. and Filippi E., “Mechanistic cutting force model parameters evaluation in milling taking cutter radial runout into account”, International Journal of Advanced Manufacturing Technology, 45: 8–15, (2009).
  • [16] Wan M., Zhang W.-H., Dang. J.-W. and Yang Y., “A novel cutting force modelling method for cylindrical end mill”, Applied Mathematical Modelling, 34: 823–836, (2010).
  • [17] Fu Z., Yang W., Wang X., Leopold J., “An analytical force model for ball-end milling based on a predictive machining theory considering cutter runout”, International Journal of Advanced Manufacturing Technology, 84, 2449–2460, (2016).
  • [18] Diez Cifuentes E., Pérez García H., Guzmán Villaseñor M., Vizán Idoipe A. “Dynamic analysis of runout correction in milling”, International Journal of Machine Tools and Manufacture, 50: 709–717 (2010).
  • [19] Aydın M. and Köklü U., “Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V Titanium Alloy”, Simulation Modelling Practice and Theory, 100: 102039, (2020).
  • [20] Altintas Y., “Manufacturing automation, metal cutting, machine tool vibration and CNC design”, Cambridge University Press, Cambridge, (2000).
  • [21] Budak E., “Analytical models for high performance milling. Part I: Cutting forces, structural deformations and tolerance integrity”, International Journal of Machine Tools and Manufacture, 46: 1478–1488, (2006).
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Aydın 0000-0003-1126-0601

Publication Date March 1, 2022
Submission Date February 24, 2020
Published in Issue Year 2022 Volume: 25 Issue: 1

Cite

APA Aydın, M. (2022). Parmak Frezeleme Sırasında Takım Salgısının Etkisi Dahil Edilerek Kesme Kuvvetlerinin Tahmini ve Analizi. Politeknik Dergisi, 25(1), 157-167. https://doi.org/10.2339/politeknik.693544
AMA Aydın M. Parmak Frezeleme Sırasında Takım Salgısının Etkisi Dahil Edilerek Kesme Kuvvetlerinin Tahmini ve Analizi. Politeknik Dergisi. March 2022;25(1):157-167. doi:10.2339/politeknik.693544
Chicago Aydın, Mehmet. “Parmak Frezeleme Sırasında Takım Salgısının Etkisi Dahil Edilerek Kesme Kuvvetlerinin Tahmini Ve Analizi”. Politeknik Dergisi 25, no. 1 (March 2022): 157-67. https://doi.org/10.2339/politeknik.693544.
EndNote Aydın M (March 1, 2022) Parmak Frezeleme Sırasında Takım Salgısının Etkisi Dahil Edilerek Kesme Kuvvetlerinin Tahmini ve Analizi. Politeknik Dergisi 25 1 157–167.
IEEE M. Aydın, “Parmak Frezeleme Sırasında Takım Salgısının Etkisi Dahil Edilerek Kesme Kuvvetlerinin Tahmini ve Analizi”, Politeknik Dergisi, vol. 25, no. 1, pp. 157–167, 2022, doi: 10.2339/politeknik.693544.
ISNAD Aydın, Mehmet. “Parmak Frezeleme Sırasında Takım Salgısının Etkisi Dahil Edilerek Kesme Kuvvetlerinin Tahmini Ve Analizi”. Politeknik Dergisi 25/1 (March 2022), 157-167. https://doi.org/10.2339/politeknik.693544.
JAMA Aydın M. Parmak Frezeleme Sırasında Takım Salgısının Etkisi Dahil Edilerek Kesme Kuvvetlerinin Tahmini ve Analizi. Politeknik Dergisi. 2022;25:157–167.
MLA Aydın, Mehmet. “Parmak Frezeleme Sırasında Takım Salgısının Etkisi Dahil Edilerek Kesme Kuvvetlerinin Tahmini Ve Analizi”. Politeknik Dergisi, vol. 25, no. 1, 2022, pp. 157-6, doi:10.2339/politeknik.693544.
Vancouver Aydın M. Parmak Frezeleme Sırasında Takım Salgısının Etkisi Dahil Edilerek Kesme Kuvvetlerinin Tahmini ve Analizi. Politeknik Dergisi. 2022;25(1):157-6.