Research Article
BibTex RIS Cite

High-Speed Machining Process of Titanium Alloy: A Comprehensive Finite Element Modeling

Year 2022, Volume: 25 Issue: 2, 813 - 826, 01.06.2022
https://doi.org/10.2339/politeknik.869482

Abstract

This study comprehensively deals with a two-dimensional finite element (FE) modeling and simulation for chip formation process of titanium alloy. The basic parameters, such as chip shape, workpiece surface, equivalent stress, plastic strain and cutting force, are analyzed to study the impact of a variety of rake angles during high-speed machining. The chip shapes vary with the tool-rake angle. During the serrated chip formation, the primary deformation region exhibits substantially higher stress than secondary region. Also, the higher strains are occurred at the chip roots. The fluctuation of the cutting force caused by the serrated chip is more prominent than that obtained during the continuous chip formation, and the force varies periodically. The results also show that an increase in the positive direction of rake angle causes a decrease in cutting force and a smoother workpiece surface.

References

  • [1] Aydın M., “Dik kesme işleminde kalıcı gerilmelerin sonlu elemanlar yöntemiyle modellenmesi”, Politeknik Dergisi, 19(3): 297–304, (2016).
  • [2] Al-Zkeri I., Rech J., Altan T., Hamdi H. and Valiorgue F., “Optimization of the cutting edge geometry of coated carbide tools in dry turning of steels using a finite element analysis”, Machining Science and Technology, 13: 36–51, (2009).
  • [3] Aydin M., “Prediction of cutting speed interval of diamond-coated tools with residual stress”, Materials and Manufacturing Processes, 32: 145–150, (2017).
  • [4] Gao C. and Zhang L., “Effect of cutting conditions on the serrated chip formation in high-speed cutting”, Machining Science and Technology, 17: 26–40, (2013).
  • [5] Gökçe H., Çiftçi İ. ve Gökçe H., “Frezeleme operasyonlarında kesme kuvvetlerinin deneysel ve sonlu elemanlar analizi ile incelenmesi: saf molibdenin işlenmesi üzerine bir çalışma”, Politeknik Dergisi, 22(4): 947–954, (2019).
  • [6] Kurt A. ve Şeker U., “Kesici takım gerilmelerinin sonlu elemanlar metodu kullanılarak incelenmesi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 20(4): 491–497, (2005).
  • [7] Akgün M. and Demir H., “Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy”, Journal of Polytechnic, https://doi.org/ 10.2339/politeknik.706605.
  • [8] Kong X., Li B., Jin Z. and Geng W., “Broaching performance of superalloy GH4169 based on FEM”, Journal of Materials Science and Technology, 27: 1178–1184, (2011).
  • [9] Komanduri R. and Turkovich B.F., “New observations on the mechanism of chip formation when machining titanium alloys”, Wear, 69: 179–188, (1981).
  • [10] Duan C.Z. and Zhang L.C., “Adiabatic shear banding in AISI 1045 steel during high speed machining: Mechanisms of microstructural evolution”, Materials Science and Engineering A, 532: 111–119, (2012).
  • [11] Arrazola P.J., Villar A., Ugarte D. and Marya S., “Serrated chip prediction in finite element modeling of the chip formation process”, Machining Science and Technology, 11: 367–390, (2007).
  • [12] Ambati R. and Yuan H., “FEM mesh-dependence in cutting process simulation”, International Journal of Advanced Manufacturing Technology, 53: 313–323, (2010).
  • [13] Duan C. and Zhang L., “A reliable method for predicting serrated chip formation in high-speed cutting: analysis and experimental verification”, International Journal of Advanced Manufacturing Technology, 64: 1587–1597, (2013).
  • [14] Aydın M. and Köklü U., “Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy”, Simulation Modelling Practice and Theory, 100: 102039, (2020).
  • [15] Aydın M., “Numerical study of chip formation and cutting force in high-speed machining of Ti-6Al-4V bases on finite element modeling with ductile fracture criterion”, International Journal of Material Forming, https://doi.org/10.1007/s12289-021-01617-9.
  • [16] Wang B., Liu Z., Hou X. and Zhao J., “Influences of cutting speed and material mechanical properties on chip deformation and fracture during high-speed cutting of Inconel 718”, Materials, 11: 461, (2018).
  • [17] Wang J., Gong Y., Abba G., Antoine J.F. and Shi J., “Chip formation analysis in micromilling operation”, International Journal of Advanced Manufacturing Technology, 45: 430–447, (2009).
  • [18] Ding H., Shen N. and Shin Y.C., “Experimental evaluation and modeling analysis of micromilling of hardened H13 tool steels”, Journal of Manufacturing Science and Engineering, 133: 041007, (2011).
  • [19] Aydın M. and Köklü U., “Identification and modeling of cutting forces in ball-end milling based on two different finite element models with Arbitrary Lagrangian Eulerian technique”, International Journal of Advanced Manufacturing Technology, 92: 1465–1480, (2017).
  • [20] Aydın M. and Köklü U., “A study of ball-end milling forces by finite element model with Lagrangian boundary of orthogonal cutting operation”, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(2): 517–527, (2018).
  • [21] Lo S.P., “An analysis of cutting under different rake angles using the finite element method”, Journal of Materials Processing Technology, 105: 143–151, (2000). [22] http://imechanica.org/files/l6-adaptive-mesh.pdf
  • [23] Johnson G.R. and Cook W.H., “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures”, Proceedings of the 7th International Symposium on Ballistics, The Netherlands, 541–547, (1983).
  • [24] Shirakashi T., Maekawa K. and Usui E., “Flow stress of low carbon steel at high temperature and strain rate. I: Propriety of incremental strain method in impact compression test with rapid heating and cooling systems”, Bulletin of the Japan Society of Precision Engineering, 17: 161–166, (1983).
  • [25] Zerilli F.J. and Armstrong R.W., “Dislocation-mechanics-based constitutive relations for material dynamics calculations”, Journal of Applied Physics, 61: 1816–1825, (1987).
  • [26] Wang B. and Liu Z., “Investigations on the chip formation mechanism and shear localization sensitivity of high-speed machining Ti6Al4V”, International Journal of Advanced Manufacturing Technology, 75: 1065–1076, (2014).
  • [27] Chen G., Li J., He Y. and Ren C., “A new approach to the determination of plastic flow stress and failure initiation strain for aluminum alloys cutting process”, Computational Materials Science, 95: 568–578, (2014).
  • [28] Johnson G.R. and Cook W.H., “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures”, Engineering Fracture Mechanics, 21: 31–48, (1985).
  • [29] Hillerborg A., Modeer M. and Petersson P.E., “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements”, Cement and Concrete Research, 6: 773–781, (1976).
  • [30] Baker M., “Finite element investigation of the flow stress dependence of chip formation”, Journal of Materials Processing Technology, 167: 1–13, (2005).
  • [31] Viggo T., “Effect of pure mode I, II or III loading or mode mixity on crack growth in a homogeneous solid”, International Journal of Solids and Structures, 47: 1611–1617, (2010).
  • [32] Meyer H.W. and Kleponis D.S., “Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration”, International Journal of Impact Engineering, 26: 509–521, (2001).
  • [33] Chen G., Ren C., Yang X., Jin X. and Guo T., “Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model”, International Journal of Advanced Manufacturing Technology, 56: 1027–1038, (2011).
  • [34] Johnson G.R. and Holmquist T.J., “Test data and computational strengthen and fracture model constants for 23 materials subjected to large strain, high-strain rates, and high temperatures”, Los Alamos National laboratory, LA-11463-MS, (1989).
  • [35] Childs T.H.C., Maekawa K., Obikawa T. and Yamane Y., “Metal machining: Theory and applications”, Arnold Publishers, London, UK, (2000).
  • [36] Zorev N.N., “Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting”, International Research in Production Engineering, New York, 42–49, (1963).
  • [37] Hall S., Loukaides E., Newman S.T. and Shokrani A., “Computational and experimental investigation of cutting tool geometry in machining titanium Ti-6Al-4V”, Procedia CIRP, 86: 139–144, (2019).

Titanyum Alaşımının Yüksek-Hızlı İşleme Süreci: Kapsamlı Sonlu Eleman Modelleme

Year 2022, Volume: 25 Issue: 2, 813 - 826, 01.06.2022
https://doi.org/10.2339/politeknik.869482

Abstract

Bu çalışma, titanyum alaşımının talaş oluşumu süreci için iki boyutlu sonlu eleman (SE) modelleme ve benzetimini kapsamlı bir şekilde ele almaktadır. Yüksek hızlı işleme sırasında çeşitli talaş açılarının etkisini incelemek için talaş şekli, iş parçası yüzeyi, eşdeğer gerilme, plastik gerinim ve kesme kuvveti gibi temel parametreler analiz edilmiştir. Talaş şekilleri, takım talaş açısıyla değişmektedir. Testere ağızlı talaş oluşumu sırasında, birincil deformasyon bölgesi, ikincil bölgeden önemli ölçüde daha yüksek gerilme sergilemektedir. Ayrıca, yüksek gerinimler talaş köklerinde meydana gelmiştir. Testere ağızlı talaşın neden olduğu kesme kuvveti dalgalanması, sürekli talaş oluşumu sırasında elde edilenden daha belirgindir ve kuvvet periyodik olarak değişmektedir. Sonuçlar, talaş açısının pozitif yöndeki artışının kesme kuvvetinde azalmaya ve daha pürüzsüz bir iş parçası yüzeyine yol açtığını da göstermektedir.

References

  • [1] Aydın M., “Dik kesme işleminde kalıcı gerilmelerin sonlu elemanlar yöntemiyle modellenmesi”, Politeknik Dergisi, 19(3): 297–304, (2016).
  • [2] Al-Zkeri I., Rech J., Altan T., Hamdi H. and Valiorgue F., “Optimization of the cutting edge geometry of coated carbide tools in dry turning of steels using a finite element analysis”, Machining Science and Technology, 13: 36–51, (2009).
  • [3] Aydin M., “Prediction of cutting speed interval of diamond-coated tools with residual stress”, Materials and Manufacturing Processes, 32: 145–150, (2017).
  • [4] Gao C. and Zhang L., “Effect of cutting conditions on the serrated chip formation in high-speed cutting”, Machining Science and Technology, 17: 26–40, (2013).
  • [5] Gökçe H., Çiftçi İ. ve Gökçe H., “Frezeleme operasyonlarında kesme kuvvetlerinin deneysel ve sonlu elemanlar analizi ile incelenmesi: saf molibdenin işlenmesi üzerine bir çalışma”, Politeknik Dergisi, 22(4): 947–954, (2019).
  • [6] Kurt A. ve Şeker U., “Kesici takım gerilmelerinin sonlu elemanlar metodu kullanılarak incelenmesi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 20(4): 491–497, (2005).
  • [7] Akgün M. and Demir H., “Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy”, Journal of Polytechnic, https://doi.org/ 10.2339/politeknik.706605.
  • [8] Kong X., Li B., Jin Z. and Geng W., “Broaching performance of superalloy GH4169 based on FEM”, Journal of Materials Science and Technology, 27: 1178–1184, (2011).
  • [9] Komanduri R. and Turkovich B.F., “New observations on the mechanism of chip formation when machining titanium alloys”, Wear, 69: 179–188, (1981).
  • [10] Duan C.Z. and Zhang L.C., “Adiabatic shear banding in AISI 1045 steel during high speed machining: Mechanisms of microstructural evolution”, Materials Science and Engineering A, 532: 111–119, (2012).
  • [11] Arrazola P.J., Villar A., Ugarte D. and Marya S., “Serrated chip prediction in finite element modeling of the chip formation process”, Machining Science and Technology, 11: 367–390, (2007).
  • [12] Ambati R. and Yuan H., “FEM mesh-dependence in cutting process simulation”, International Journal of Advanced Manufacturing Technology, 53: 313–323, (2010).
  • [13] Duan C. and Zhang L., “A reliable method for predicting serrated chip formation in high-speed cutting: analysis and experimental verification”, International Journal of Advanced Manufacturing Technology, 64: 1587–1597, (2013).
  • [14] Aydın M. and Köklü U., “Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy”, Simulation Modelling Practice and Theory, 100: 102039, (2020).
  • [15] Aydın M., “Numerical study of chip formation and cutting force in high-speed machining of Ti-6Al-4V bases on finite element modeling with ductile fracture criterion”, International Journal of Material Forming, https://doi.org/10.1007/s12289-021-01617-9.
  • [16] Wang B., Liu Z., Hou X. and Zhao J., “Influences of cutting speed and material mechanical properties on chip deformation and fracture during high-speed cutting of Inconel 718”, Materials, 11: 461, (2018).
  • [17] Wang J., Gong Y., Abba G., Antoine J.F. and Shi J., “Chip formation analysis in micromilling operation”, International Journal of Advanced Manufacturing Technology, 45: 430–447, (2009).
  • [18] Ding H., Shen N. and Shin Y.C., “Experimental evaluation and modeling analysis of micromilling of hardened H13 tool steels”, Journal of Manufacturing Science and Engineering, 133: 041007, (2011).
  • [19] Aydın M. and Köklü U., “Identification and modeling of cutting forces in ball-end milling based on two different finite element models with Arbitrary Lagrangian Eulerian technique”, International Journal of Advanced Manufacturing Technology, 92: 1465–1480, (2017).
  • [20] Aydın M. and Köklü U., “A study of ball-end milling forces by finite element model with Lagrangian boundary of orthogonal cutting operation”, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(2): 517–527, (2018).
  • [21] Lo S.P., “An analysis of cutting under different rake angles using the finite element method”, Journal of Materials Processing Technology, 105: 143–151, (2000). [22] http://imechanica.org/files/l6-adaptive-mesh.pdf
  • [23] Johnson G.R. and Cook W.H., “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures”, Proceedings of the 7th International Symposium on Ballistics, The Netherlands, 541–547, (1983).
  • [24] Shirakashi T., Maekawa K. and Usui E., “Flow stress of low carbon steel at high temperature and strain rate. I: Propriety of incremental strain method in impact compression test with rapid heating and cooling systems”, Bulletin of the Japan Society of Precision Engineering, 17: 161–166, (1983).
  • [25] Zerilli F.J. and Armstrong R.W., “Dislocation-mechanics-based constitutive relations for material dynamics calculations”, Journal of Applied Physics, 61: 1816–1825, (1987).
  • [26] Wang B. and Liu Z., “Investigations on the chip formation mechanism and shear localization sensitivity of high-speed machining Ti6Al4V”, International Journal of Advanced Manufacturing Technology, 75: 1065–1076, (2014).
  • [27] Chen G., Li J., He Y. and Ren C., “A new approach to the determination of plastic flow stress and failure initiation strain for aluminum alloys cutting process”, Computational Materials Science, 95: 568–578, (2014).
  • [28] Johnson G.R. and Cook W.H., “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures”, Engineering Fracture Mechanics, 21: 31–48, (1985).
  • [29] Hillerborg A., Modeer M. and Petersson P.E., “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements”, Cement and Concrete Research, 6: 773–781, (1976).
  • [30] Baker M., “Finite element investigation of the flow stress dependence of chip formation”, Journal of Materials Processing Technology, 167: 1–13, (2005).
  • [31] Viggo T., “Effect of pure mode I, II or III loading or mode mixity on crack growth in a homogeneous solid”, International Journal of Solids and Structures, 47: 1611–1617, (2010).
  • [32] Meyer H.W. and Kleponis D.S., “Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration”, International Journal of Impact Engineering, 26: 509–521, (2001).
  • [33] Chen G., Ren C., Yang X., Jin X. and Guo T., “Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model”, International Journal of Advanced Manufacturing Technology, 56: 1027–1038, (2011).
  • [34] Johnson G.R. and Holmquist T.J., “Test data and computational strengthen and fracture model constants for 23 materials subjected to large strain, high-strain rates, and high temperatures”, Los Alamos National laboratory, LA-11463-MS, (1989).
  • [35] Childs T.H.C., Maekawa K., Obikawa T. and Yamane Y., “Metal machining: Theory and applications”, Arnold Publishers, London, UK, (2000).
  • [36] Zorev N.N., “Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting”, International Research in Production Engineering, New York, 42–49, (1963).
  • [37] Hall S., Loukaides E., Newman S.T. and Shokrani A., “Computational and experimental investigation of cutting tool geometry in machining titanium Ti-6Al-4V”, Procedia CIRP, 86: 139–144, (2019).
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Aydın 0000-0003-1126-0601

Publication Date June 1, 2022
Submission Date January 27, 2021
Published in Issue Year 2022 Volume: 25 Issue: 2

Cite

APA Aydın, M. (2022). Titanyum Alaşımının Yüksek-Hızlı İşleme Süreci: Kapsamlı Sonlu Eleman Modelleme. Politeknik Dergisi, 25(2), 813-826. https://doi.org/10.2339/politeknik.869482
AMA Aydın M. Titanyum Alaşımının Yüksek-Hızlı İşleme Süreci: Kapsamlı Sonlu Eleman Modelleme. Politeknik Dergisi. June 2022;25(2):813-826. doi:10.2339/politeknik.869482
Chicago Aydın, Mehmet. “Titanyum Alaşımının Yüksek-Hızlı İşleme Süreci: Kapsamlı Sonlu Eleman Modelleme”. Politeknik Dergisi 25, no. 2 (June 2022): 813-26. https://doi.org/10.2339/politeknik.869482.
EndNote Aydın M (June 1, 2022) Titanyum Alaşımının Yüksek-Hızlı İşleme Süreci: Kapsamlı Sonlu Eleman Modelleme. Politeknik Dergisi 25 2 813–826.
IEEE M. Aydın, “Titanyum Alaşımının Yüksek-Hızlı İşleme Süreci: Kapsamlı Sonlu Eleman Modelleme”, Politeknik Dergisi, vol. 25, no. 2, pp. 813–826, 2022, doi: 10.2339/politeknik.869482.
ISNAD Aydın, Mehmet. “Titanyum Alaşımının Yüksek-Hızlı İşleme Süreci: Kapsamlı Sonlu Eleman Modelleme”. Politeknik Dergisi 25/2 (June 2022), 813-826. https://doi.org/10.2339/politeknik.869482.
JAMA Aydın M. Titanyum Alaşımının Yüksek-Hızlı İşleme Süreci: Kapsamlı Sonlu Eleman Modelleme. Politeknik Dergisi. 2022;25:813–826.
MLA Aydın, Mehmet. “Titanyum Alaşımının Yüksek-Hızlı İşleme Süreci: Kapsamlı Sonlu Eleman Modelleme”. Politeknik Dergisi, vol. 25, no. 2, 2022, pp. 813-26, doi:10.2339/politeknik.869482.
Vancouver Aydın M. Titanyum Alaşımının Yüksek-Hızlı İşleme Süreci: Kapsamlı Sonlu Eleman Modelleme. Politeknik Dergisi. 2022;25(2):813-26.