Farklı Kalınlıklara Sahip Kivi Dilimlerinin Dondurulması ve Kurutma İşlemi Özelliklerinin İncelenmesi
Year 2023,
Volume: 26 Issue: 1, 415 - 423, 27.03.2023
Bahadir Acar
,
Abdullah Dağdeviren
,
Prof. Dr. Mehmet Özkaymak
,
Abdillahi Robleh Guinaleh
Abstract
Bu çalışmada kivi meyvesi 5 mm ve 7 mm kalınlıklarında dilimlenmiş ve dilimlenen numuneler dondurularak kurutma cihazına konulmuştur. Kurutma işlemi sırasında numunelerin ağırlık kayıpları ölçülerek kaydedildi ve bu ölçümler kullanılarak kinetik kurutma modelleri gerçekleştirildi. Toplam 14 saat süren deneyde 100 gr ağırlıktaki her bir kivi diliminin ağırlık kayıpları iki saatte bir ölçülerek nem oranları (MR) da hesaplanmıştır. Deneysel sonuçlar ışığında MATLAB yazılımı kullanılarak 8 farklı kinetik kurutma modeli gerçekleştirilmiştir. Sonuç olarak, 5 mm ve 7 mm kalınlıklar için en düşük indirgenmiş ki-kare (X2) değerleri sırasıyla yaklaşık 8.261x10-6 ve 1.705x10-5 olarak hesaplandı, kök ortalama kare hata değerleri (RMSE) ise 0.002865 ve 0.004146 hesaplanmıştır. Ayrıca, her iki kalınlık için belirleme katsayısı (R2) 1'e en yakın en yüksek sonuç olan 0.9999 olarak hesaplanmıştır. 8 farklı kinetik kurutma modeli arasından kivi ürünlerinin her iki kalınlıkları içinde uygun olan kinetik kurutma modelinin Logaritmik kurutma modeli olduğu gözlemlenmiştir. Nem içerikleri ve kuruma oranları göz önüne alındığında 7 mm kalınlığındaki kivi dilimlerinin kuruma hızının, daha yüksek nem içeriği nedeniyle yavaş davranış sergilediği görülmüştür. Ayrıca 5 mm ve 7 mm kalınlığındaki numuneler için efektif difüzivite katsayılarının sırasıyla 2,25 × 10-10 m2/s ve 3,28 × 10-10 m2/s olarak hesaplanmıştır.
Supporting Institution
Karabük Üniversitesi
Thanks
Karabük Ümiversitesi Teknoloji Fakültesi Laboratuvar
References
- [1] Folletta P. A., Jamieson L., Hamilton L., Wall M., “New associations and host status: Infestability of kiwifruit by the fruit fly species Bactrocera dorsalis, Zeugodacus cucurbitae, and Ceratitis capitata (Diptera: Tephritidae)”, Crop Protection, 115: 113–121, (2019).
- [2] Cassano A., Figoli A., Tagarelli A., Sindona G., Drioli E. “Integrated membrane process for the production of highly nutritional kiwifruit juice”, Desalination, 189: 21–30, (2006).
- [3] Latocha P., Krupa T., Wolosiak R., Worobiej E., “Antioxidant activity and chemical difference in fruit of different Actinidia sp”, International Journal of Food Science and Nutrition, 61(4): 381–394, (2010).
- [4] Dias M., Caleja C., Pereira C., Calhelda R.C., Kostic M., Sokovic M., Tavares D., Baraldi I. J., Barros L., Ferreira I. C. F. R., “Chemical composition and bioactive properties of byproducts from two different kiwi varieties”, Food Research International, 127: 108753, (2020).
- [5] Özdemir M.B., Aktaş M., Şevik S., Khanlari A., “Modeling of a convective-infrared kiwifruit drying process”, International journal of Hydrogen Energy, 42: 18005–18013, (2017).
- [6] Ercisli S., Esitken A., Cangi R., Sahin F., Adventitious root formation of kiwifruit in relation to sampling date, IBA and Agrobacterium rubi inoculation, Plant Growth Regulation, 41: 133–137, (2003).
- [7] Tavarini S., Degl’lnnocenti E., Remorini D., Massai R., Guidi L., Antioxidant capacity, ascorbic acid, total phenols and carotenoids during harvest and after storage of Hayward kiwifruit, Food Chemistry, 107: 282–288, (2008).
- [8] Simal S., Femenia A., Carcel J. A., Rosello C., Mathematical modelling of the drying curves of kiwi fruits: influence of the ripening stage, Journal of the Science of Food and Agriculture, 85: 425–432, (2005).
- [9] Beirao-da C.S., Steiner A., Correia L., Leitao E., Empis J., Moldao M. M., Influence of moderate heat treatments on physical and chemical characteristics of kiwifruits slices, European Food Research and Technology, 226: 641–651, (2008).
- [10] Kunzek H., Müller S., Vetter S., Godeck R., The significance of physicochemical properties of plant cell wall materials for the development of innovative food products, European Food Research and Technology, 214: 361–376, (2002).
- [11] Goula A.M. and Adamopoulos K.G., Retention of ascorbic acid during drying of tomato halves and tomato pulp, Drying Technology, 24: 57–64, (2006).
- [12] Uddin M.S., Hawlader M., Zhou L., Kinetics of ascorbic acid degradation in dried kiwifruits during storage, Drying Technology, 19(2): 437–446, (2001).
- [13] Orikasa T., Wu L., Shiina T., Tagawa A., Drying characteristics of kiwifruit during hot air drying, Journal of Food Engineering, 85: 303–308, (2008).
- [14] Femenia A., Sastre-Serrano G., Simal S., Garau M.C., Eim V.S., Rosello C., Effects of air-drying temperature on the cell walls of kiwifruit processed at different stages of ripening, LWT, Food Science and Technology, 42: 106–112, (2009).
- [15] Zhou X., Ramaswamy H., Qu Y., Xu R., Wang S., Combined radio frequency-vacuum and hot air drying of kiwifruits: Effect on drying uniformity, energy efficiency and product quality, Innovative Food Science and Emerging Technologies, 56: 102182, (2019).
- [16] Simal S., Femenia A., Garau M.C., Rossello C., Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit, Journal of Food Engineering, 66: 323–328, (2005).
- [18] Maskan M., Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying, Journal of Food Engineering, 48: 177–182, (2001).
- [19] Variyenli H.I., Güneş enerjisi destekli düz ve hapsedici yüzeyli kurutma fırınlarının performanslarının kivi kurutarak karşılaştırılması, Politeknik Dergisi, 21: 3, 723-729, (2018).
- [20] Kaya A., Aydın O., Dincer I., Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits (Actinidia Deliciosa Planch), Journal of Food Engineering, 88: 323–330, (2008).
- [21] Sadıkoglu H., Liapis A., Crosser O., Optimal control of the primary and secondary drying stages of bulk solution freeze drying in trays, Drying Technology, 16: 399-431, (2007).
- [22] Acar B., Sadikoglu H., Doymaz I., Freeze-Drying Kinetics And Diffusion Modeling Of Saffron (Crocus Satıvus L.), Journal of Food Processing and Preservation, 39: 142–149, (2015).
- [23] Menges H.O. and Ertekin C., Mathematical modeling of thin layer drying of Golden apples, Journal of Food Engineering, 77: 119-125, (2006).
- [24] Gálvez A.V., Aranda M., Sainz C.B., Uribe E., Empirical modeling of drying process for apple (Cv. Granny Smith) slices at different air temperatures, Journal of Food Processing Preservation, 32: 972–986, (2008).
- [25] Rayaguru K., Routray W., Mathematical modelling and quality parameters of air-dried betel leaf (Piper betle L.), Journal of Food Processing Preservation, 35: 394–401, (2011).
- [26] Zogzas N.P., Maraulis Z.B., Marinos-Kouirs D., Moisture diffusivity data compilation in foodstuffs, Drying Technology, 14, 2225–2253, (1996).
Freeze Drying Process of Kiwi Slices With Various Thicknesses And Investigation Drying Characteristic of Process
Year 2023,
Volume: 26 Issue: 1, 415 - 423, 27.03.2023
Bahadir Acar
,
Abdullah Dağdeviren
,
Prof. Dr. Mehmet Özkaymak
,
Abdillahi Robleh Guinaleh
Abstract
In the study, the kiwi fruit was sliced into various thicknesses as 5 mm and 7 mm, and those sliced specimens were put in the freeze-drying device. the mass losses of the specimens were measured and saved during the drying process and kinetic drying models were performed using those measurements. The mass losses of each kiwi slices in 100 g mass were measured every two hours in the experiment lasting 14 hours in total and moisture ratios (MR) were calculated as well. Considering the experimental results, 8 different kinetics drying models were performed using MATLAB software. As a result, the lowest reduced chi-square (X2) values for 5 mm and 7 mm thicknesses were calculated about 8.261x10-6 and 1.705x10-5 respectively, the root means square error values (RMSE) were about 0.002865 and 0.004146, respectively. Also, the coefficient of determination (R2) for both thicknesses was calculated as 0.9999 which was the highest result closest to 1. Among the 8 different kinetic drying models, the Logarithmic model was chosen as a proper kinetic drying model for kiwi products. When the moisture contents and drying rates were considered it was seen that the drying rate of kiwi slices with 7 mm thickness exhibited slow behavior because of the higher moisture content. Besides, it was determined that the effective diffusivity coefficients for specimens with 5 mm and 7 mm thickness were calculated as 2.25 × 10-10 m2/s and 3.28 × 10-10 m2/s respectively.
References
- [1] Folletta P. A., Jamieson L., Hamilton L., Wall M., “New associations and host status: Infestability of kiwifruit by the fruit fly species Bactrocera dorsalis, Zeugodacus cucurbitae, and Ceratitis capitata (Diptera: Tephritidae)”, Crop Protection, 115: 113–121, (2019).
- [2] Cassano A., Figoli A., Tagarelli A., Sindona G., Drioli E. “Integrated membrane process for the production of highly nutritional kiwifruit juice”, Desalination, 189: 21–30, (2006).
- [3] Latocha P., Krupa T., Wolosiak R., Worobiej E., “Antioxidant activity and chemical difference in fruit of different Actinidia sp”, International Journal of Food Science and Nutrition, 61(4): 381–394, (2010).
- [4] Dias M., Caleja C., Pereira C., Calhelda R.C., Kostic M., Sokovic M., Tavares D., Baraldi I. J., Barros L., Ferreira I. C. F. R., “Chemical composition and bioactive properties of byproducts from two different kiwi varieties”, Food Research International, 127: 108753, (2020).
- [5] Özdemir M.B., Aktaş M., Şevik S., Khanlari A., “Modeling of a convective-infrared kiwifruit drying process”, International journal of Hydrogen Energy, 42: 18005–18013, (2017).
- [6] Ercisli S., Esitken A., Cangi R., Sahin F., Adventitious root formation of kiwifruit in relation to sampling date, IBA and Agrobacterium rubi inoculation, Plant Growth Regulation, 41: 133–137, (2003).
- [7] Tavarini S., Degl’lnnocenti E., Remorini D., Massai R., Guidi L., Antioxidant capacity, ascorbic acid, total phenols and carotenoids during harvest and after storage of Hayward kiwifruit, Food Chemistry, 107: 282–288, (2008).
- [8] Simal S., Femenia A., Carcel J. A., Rosello C., Mathematical modelling of the drying curves of kiwi fruits: influence of the ripening stage, Journal of the Science of Food and Agriculture, 85: 425–432, (2005).
- [9] Beirao-da C.S., Steiner A., Correia L., Leitao E., Empis J., Moldao M. M., Influence of moderate heat treatments on physical and chemical characteristics of kiwifruits slices, European Food Research and Technology, 226: 641–651, (2008).
- [10] Kunzek H., Müller S., Vetter S., Godeck R., The significance of physicochemical properties of plant cell wall materials for the development of innovative food products, European Food Research and Technology, 214: 361–376, (2002).
- [11] Goula A.M. and Adamopoulos K.G., Retention of ascorbic acid during drying of tomato halves and tomato pulp, Drying Technology, 24: 57–64, (2006).
- [12] Uddin M.S., Hawlader M., Zhou L., Kinetics of ascorbic acid degradation in dried kiwifruits during storage, Drying Technology, 19(2): 437–446, (2001).
- [13] Orikasa T., Wu L., Shiina T., Tagawa A., Drying characteristics of kiwifruit during hot air drying, Journal of Food Engineering, 85: 303–308, (2008).
- [14] Femenia A., Sastre-Serrano G., Simal S., Garau M.C., Eim V.S., Rosello C., Effects of air-drying temperature on the cell walls of kiwifruit processed at different stages of ripening, LWT, Food Science and Technology, 42: 106–112, (2009).
- [15] Zhou X., Ramaswamy H., Qu Y., Xu R., Wang S., Combined radio frequency-vacuum and hot air drying of kiwifruits: Effect on drying uniformity, energy efficiency and product quality, Innovative Food Science and Emerging Technologies, 56: 102182, (2019).
- [16] Simal S., Femenia A., Garau M.C., Rossello C., Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit, Journal of Food Engineering, 66: 323–328, (2005).
- [18] Maskan M., Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying, Journal of Food Engineering, 48: 177–182, (2001).
- [19] Variyenli H.I., Güneş enerjisi destekli düz ve hapsedici yüzeyli kurutma fırınlarının performanslarının kivi kurutarak karşılaştırılması, Politeknik Dergisi, 21: 3, 723-729, (2018).
- [20] Kaya A., Aydın O., Dincer I., Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits (Actinidia Deliciosa Planch), Journal of Food Engineering, 88: 323–330, (2008).
- [21] Sadıkoglu H., Liapis A., Crosser O., Optimal control of the primary and secondary drying stages of bulk solution freeze drying in trays, Drying Technology, 16: 399-431, (2007).
- [22] Acar B., Sadikoglu H., Doymaz I., Freeze-Drying Kinetics And Diffusion Modeling Of Saffron (Crocus Satıvus L.), Journal of Food Processing and Preservation, 39: 142–149, (2015).
- [23] Menges H.O. and Ertekin C., Mathematical modeling of thin layer drying of Golden apples, Journal of Food Engineering, 77: 119-125, (2006).
- [24] Gálvez A.V., Aranda M., Sainz C.B., Uribe E., Empirical modeling of drying process for apple (Cv. Granny Smith) slices at different air temperatures, Journal of Food Processing Preservation, 32: 972–986, (2008).
- [25] Rayaguru K., Routray W., Mathematical modelling and quality parameters of air-dried betel leaf (Piper betle L.), Journal of Food Processing Preservation, 35: 394–401, (2011).
- [26] Zogzas N.P., Maraulis Z.B., Marinos-Kouirs D., Moisture diffusivity data compilation in foodstuffs, Drying Technology, 14, 2225–2253, (1996).