Dağıtım Transformatörleri İçin En Sıcak Nokta Sıcaklığına Dayalı Bir Ömür Sayacının Tasarımı Ve Saha Uygulaması
Year 2024,
EARLY VIEW, 1 - 1
Hasan Dirik
,
Cenk Gezegin
,
Okan Ozgonenel
,
Ali Geyikoğlu
,
İdris Sancaktar
Abstract
Genellikle ömürleri 30 yıl civarında olacak şekilde tasarlanan transformatörlerin gerçek ömrünü belirleyen en önemli parametre sargı yalıtımlarının maruz kaldığı aşırı sıcaklıklardır. Sargı yalıtımının maruz kaldığı sıcaklığın kritik sıcaklığı aşması halinde yaşlanma hızı beklenen değerin çok üzerine çıkarken altında yaşlanma çok daha yavaş olmaktadır. Bu yüzden bir transformatörün sargı sıcaklığının doğru bir biçimde izlenebilmesi ile transformatörün yaşlanma hızının ve kalan ömrünün doğru bir biçimde tayin edilebilmesi mümkündür. Bu çalışmada bu bilgilere dayanılarak geliştirilen bir ömür sayacı cihazının tasarımı ve saha uygulaması anlatılmıştır. Tasarımda kullanılan hesaplama yöntemi ilk olarak gerçek zamanlı akım ve gerilim değerleri üzerinden hesaplanan sargı direncini kullanarak ortalama sargı sıcaklığı (OSS) değerini hesaplamaktadır. Sonraki adımda ise OSS ile birlikte transformatörün tepe yağ sıcaklığı (TYS) ve çevre sıcaklığı da kullanılarak sargı en sıcak nokta sıcaklığı (ESNS) bulunmaktadır. Son adımda ise sargı ESNS değeri üzerinden transformatörün yaşlanma hızına ve kullanılan/kalan ömür değerlerine ulaşılmaktadır. Cihaz, transformatörün kullanılan ve kalan ömrünü izlemenin yanında aşırı sıcaklığa bağlı olarak kullanıcıya uyarı ve alarm işaretleri de üretebilmekte ve enerji verimli soğutma kontrolü yapabilmektedir. Geliştirilen transformatör ömür sayacı cihazı ölçtüğü ve hesapladığı verileri üzerinde yer alan bir dokunmatik ekran ile kullanıcıya sunabildiği gibi kablosuz internet bağlantısı üzerinden bir sunucuya da aktarmaktadır.
Supporting Institution
EPDK ve Sinop Üniversitesi
Project Number
02/21/04-02 ve MYO-1901-21-001, 2021
Thanks
Bu çalışma EPDK AR-GE komisyonu tarafından Temmuz 2021 dönemi 02/21/04-02 karar sayılı “Dağıtım Transformatörlerinde Hot-Spot Sıcaklığının Hesaplanması İçin Yeni Bir Yöntem ve Ömür Sayacı Geliştirilmesi Pilot Uygulaması” isimli proje ile desteklenmiştir.
Bu çalışma Sinop Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince desteklenmiştir. Proje Numarası: MYO-1901-21-001, 2021
References
- [1] Özgönenel, O. (2002). Güç Transformatörü Korumasinda İkinci Harmoniğin Etkisinin Azaltilmasi. Politeknik Dergisi, 5(3), 221-225.
- [2] Behkam, R., Moradzadeh, A., Karami, H., Nadery, M. S., Mohammadi Ivatloo, B., Gharehpetian, G. B., & Tenbohlen, S. (2023). Mechanical Fault Types Detection in Transformer Windings Using Interpretation of Frequency Responses via Multilayer Perceptron. Journal of Operation and Automation in Power Engineering, 11(1), 11-21.
- [3] Ali, M. S., Omar, A., Jaafar, A. S. A., & Mohamed, S. H. (2023). Conventional methods of dissolved gas analysis using oil-immersed power transformer for fault diagnosis: A review. Electric Power Systems Research, 216, 109064.
- [4] Li, C., Chen, J., Yang, C., Yang, J., Liu, Z., & Davari, P. (2023). Convolutional Neural Network-Based Transformer Fault Diagnosis Using Vibration Signals. Sensors, 23(10), 4781.
- [5] Betta, G., Pietrosanto, A., & Scaglione, A. (2001). An enhanced fiber-optic temperature sensor system for power transformer monitoring. IEEE Transactions on instrumentation and measurement, 50(5), 1138-1143.
- [6] Soni, R., & Mehta, B. (2023). A review on transformer condition monitoring with critical investigation of mineral oil and alternate dielectric fluids. Electric Power Systems Research, 214, 108954.
- [7] Çınar, M. A. (2019). Transformatörlerde Kazan Kayıplarının Azaltılmasında En Uygun Yatay Şönt Eleman Boyutu ve Konumunun Parametrik Sonlu Elemanlar Analizleri ile İncelenmesi. Politeknik Dergisi, 22(3), 729-736.
- [8] Karademir, A., & Eker, M. K. (2016). Transformatör T-Bağlantı Yapısının Çekirdek Kayıplarına Etkisi. Politeknik Dergisi, 19(4), 389-397.
- [9] Kachler, A. J. and Hohlein, I., “Aging of cellulose at transformer service temperatures. Part 1: Influence of type of oil and air on the degree of polymerization of pressboard, dissolved gases, and furanic compounds in oil”, IEEE Electrical Insulation Magazine, 21(2), 15-21, (2005).
- [10] Duval, M., De Pablo, A., Atanasova-Hoehlein, I. and Grisaru, M., “Significance and detection of very low degree of polymerization of paper in transformers”, IEEE Electrical Insulation Magazine, 33(1), 31-38, (2017).
- [11] Susa, D. and Nordman, H., “A simple model for calculating transformer hot-spot temperature”, IEEE transactions on power delivery, 24(3), 1257-1265, (2009).
- [12] Arabul, A. Y. and Senol, I., “Development of a hot-spot temperature calculation method for the loss of life estimation of an ONAN distribution transformer”, Electrical Engineering, 100, 1651-1659, (2018).
- [13] IEC Standards, “Power Transformers‐Part 2: Temperature rise for liquid‐immersed transformers”, IEC 60076‐2, 1-95, (2011).
- [14] Abu-Elanien, A. E. and Salama, M. M. A., “A Monte Carlo approach for calculating the thermal lifetime of transformer insulation”, International Journal of Electrical Power & Energy Systems, 43(1), 481-487, (2012).
- [15] Radakovic, Z. and Feser, K., “A new method for the calculation of the hot-spot temperature in power transformers with ONAN cooling”, IEEE Transactions on Power Delivery, 18(4), 1284-1292, (2003).
- [16] Isha, M. T. and Wang, Z., “Transformer hotspot temperature calculation using IEEE loading guide”, International Conference on Condition Monitoring and Diagnosis, 1017-1020, (2008).
- [17] Rommel, D. P., Di Maio, D. and Tinga, T., “Transformer hot spot temperature prediction based on basic operator information”, International Journal of Electrical Power & Energy Systems, 124, 106340, 1-15, (2021).
- [18] Josue, F., Arifianto, I., Saers, R., Rosenlind, J. and Hilber, P., “Transformer hot-spot temperature estimation for short-time dynamic loading”, IEEE international conference on condition monitoring and diagnosis, 217-220, (2012).
- [19] Deng, Y., Ruan, J., Quan, Y., Gong, R., Huang, D., Duan, C. and Xie, Y., “A method for hot spot temperature prediction of a 10 kV oil-immersed transformer”, IEEE Access, 7, 107380-107388, (2019).
- [20] Nicola, M., Nicola, C. I., Sacerdoţianu, D., Hurezeanu, I. and Duţă, M., “Monitoring system for power transformer windings hot spot temperature using fiber optic sensors, Kalman filter and integration in SCADA system”, American Journal of Signal Processing, 8(2), 33-44, (2018).
- [21] Reddy, A. S. and Vijaykumar, M., “Hottest spot and life evaluation of power transformer design using finite element method”, Journal of Theoretical & Applied Information Technology, 4(3), 238-243, (2008).
- [22] Susa, D., Lehtonen, M. and Nordman, H., “Dynamic thermal modelling of power transformers”, IEEE transactions on Power Delivery, 20(1), 197-204, (2005).
- [23] IEEE Standards Association, “IEEE guide for loading mineral-oil-immersed transformers and step-voltage regulators”, IEEE Std C57.91-2011, 1-123, 7 March 2012.
- [24] Gezegin, C., Özgonenel, O. and Dirik, H., “A Monitoring Method for Average Winding and Hot-Spot Temperatures of Single-Phase, Oil-Immersed Transformers”, IEEE Transactions on Power Delivery, 36(5), 3196-3203, (2020).
- [25] IEEE Standards Association, "IEEE Recommended Practice for Performing Temperature Rise Tests on Liquid-Immersed Power Transformers at Loads Beyond Nameplate Ratings", IEEE Std C57.119-2018, 1-49, (2018).
Design and Field Application of a Lifetime Metering Device for Distribution Transformers Based on Hot-Spot Temperature
Year 2024,
EARLY VIEW, 1 - 1
Hasan Dirik
,
Cenk Gezegin
,
Okan Ozgonenel
,
Ali Geyikoğlu
,
İdris Sancaktar
Abstract
The most important parameter determining real lifetime of transformers, which are generally designed to have a lifespan of around 30 years, is excessive temperatures exposed to winding insulations. If the temperature of the winding insulation exceeds the critical temperature, aging rate decreases below the expected value, while it is under the critical temperature the aging becomes much slower. Therefore, by accurately monitoring winding temperature of a transformer, it is possible to accurately determine the aging rate and remaining life. In this study, design and field application of a lifetime metering device that developed based on this information is explained. The calculation method first calculates average winding temperature using winding resistance that is obtained by the real-time currents and voltages. Next, the winding hot-spot temperature is calculated using top oil temperature of transformer, ambient and average winding temperature. Last, the aging rate and used/remaining life values of transformer are obtained by winding hot-spot temperature. In addition to monitoring the used/remaining life, the device can also generate warning and alarm signals for user depending on excessive temperature and perform energy efficient cooling control. The developed transformer lifetime metering device can not only present the data to user with a touch screen on it, but also transfer it to a server via wireless internet connection.
Project Number
02/21/04-02 ve MYO-1901-21-001, 2021
References
- [1] Özgönenel, O. (2002). Güç Transformatörü Korumasinda İkinci Harmoniğin Etkisinin Azaltilmasi. Politeknik Dergisi, 5(3), 221-225.
- [2] Behkam, R., Moradzadeh, A., Karami, H., Nadery, M. S., Mohammadi Ivatloo, B., Gharehpetian, G. B., & Tenbohlen, S. (2023). Mechanical Fault Types Detection in Transformer Windings Using Interpretation of Frequency Responses via Multilayer Perceptron. Journal of Operation and Automation in Power Engineering, 11(1), 11-21.
- [3] Ali, M. S., Omar, A., Jaafar, A. S. A., & Mohamed, S. H. (2023). Conventional methods of dissolved gas analysis using oil-immersed power transformer for fault diagnosis: A review. Electric Power Systems Research, 216, 109064.
- [4] Li, C., Chen, J., Yang, C., Yang, J., Liu, Z., & Davari, P. (2023). Convolutional Neural Network-Based Transformer Fault Diagnosis Using Vibration Signals. Sensors, 23(10), 4781.
- [5] Betta, G., Pietrosanto, A., & Scaglione, A. (2001). An enhanced fiber-optic temperature sensor system for power transformer monitoring. IEEE Transactions on instrumentation and measurement, 50(5), 1138-1143.
- [6] Soni, R., & Mehta, B. (2023). A review on transformer condition monitoring with critical investigation of mineral oil and alternate dielectric fluids. Electric Power Systems Research, 214, 108954.
- [7] Çınar, M. A. (2019). Transformatörlerde Kazan Kayıplarının Azaltılmasında En Uygun Yatay Şönt Eleman Boyutu ve Konumunun Parametrik Sonlu Elemanlar Analizleri ile İncelenmesi. Politeknik Dergisi, 22(3), 729-736.
- [8] Karademir, A., & Eker, M. K. (2016). Transformatör T-Bağlantı Yapısının Çekirdek Kayıplarına Etkisi. Politeknik Dergisi, 19(4), 389-397.
- [9] Kachler, A. J. and Hohlein, I., “Aging of cellulose at transformer service temperatures. Part 1: Influence of type of oil and air on the degree of polymerization of pressboard, dissolved gases, and furanic compounds in oil”, IEEE Electrical Insulation Magazine, 21(2), 15-21, (2005).
- [10] Duval, M., De Pablo, A., Atanasova-Hoehlein, I. and Grisaru, M., “Significance and detection of very low degree of polymerization of paper in transformers”, IEEE Electrical Insulation Magazine, 33(1), 31-38, (2017).
- [11] Susa, D. and Nordman, H., “A simple model for calculating transformer hot-spot temperature”, IEEE transactions on power delivery, 24(3), 1257-1265, (2009).
- [12] Arabul, A. Y. and Senol, I., “Development of a hot-spot temperature calculation method for the loss of life estimation of an ONAN distribution transformer”, Electrical Engineering, 100, 1651-1659, (2018).
- [13] IEC Standards, “Power Transformers‐Part 2: Temperature rise for liquid‐immersed transformers”, IEC 60076‐2, 1-95, (2011).
- [14] Abu-Elanien, A. E. and Salama, M. M. A., “A Monte Carlo approach for calculating the thermal lifetime of transformer insulation”, International Journal of Electrical Power & Energy Systems, 43(1), 481-487, (2012).
- [15] Radakovic, Z. and Feser, K., “A new method for the calculation of the hot-spot temperature in power transformers with ONAN cooling”, IEEE Transactions on Power Delivery, 18(4), 1284-1292, (2003).
- [16] Isha, M. T. and Wang, Z., “Transformer hotspot temperature calculation using IEEE loading guide”, International Conference on Condition Monitoring and Diagnosis, 1017-1020, (2008).
- [17] Rommel, D. P., Di Maio, D. and Tinga, T., “Transformer hot spot temperature prediction based on basic operator information”, International Journal of Electrical Power & Energy Systems, 124, 106340, 1-15, (2021).
- [18] Josue, F., Arifianto, I., Saers, R., Rosenlind, J. and Hilber, P., “Transformer hot-spot temperature estimation for short-time dynamic loading”, IEEE international conference on condition monitoring and diagnosis, 217-220, (2012).
- [19] Deng, Y., Ruan, J., Quan, Y., Gong, R., Huang, D., Duan, C. and Xie, Y., “A method for hot spot temperature prediction of a 10 kV oil-immersed transformer”, IEEE Access, 7, 107380-107388, (2019).
- [20] Nicola, M., Nicola, C. I., Sacerdoţianu, D., Hurezeanu, I. and Duţă, M., “Monitoring system for power transformer windings hot spot temperature using fiber optic sensors, Kalman filter and integration in SCADA system”, American Journal of Signal Processing, 8(2), 33-44, (2018).
- [21] Reddy, A. S. and Vijaykumar, M., “Hottest spot and life evaluation of power transformer design using finite element method”, Journal of Theoretical & Applied Information Technology, 4(3), 238-243, (2008).
- [22] Susa, D., Lehtonen, M. and Nordman, H., “Dynamic thermal modelling of power transformers”, IEEE transactions on Power Delivery, 20(1), 197-204, (2005).
- [23] IEEE Standards Association, “IEEE guide for loading mineral-oil-immersed transformers and step-voltage regulators”, IEEE Std C57.91-2011, 1-123, 7 March 2012.
- [24] Gezegin, C., Özgonenel, O. and Dirik, H., “A Monitoring Method for Average Winding and Hot-Spot Temperatures of Single-Phase, Oil-Immersed Transformers”, IEEE Transactions on Power Delivery, 36(5), 3196-3203, (2020).
- [25] IEEE Standards Association, "IEEE Recommended Practice for Performing Temperature Rise Tests on Liquid-Immersed Power Transformers at Loads Beyond Nameplate Ratings", IEEE Std C57.119-2018, 1-49, (2018).