Research Article
BibTex RIS Cite

Development of Waste Generation Factors Based on Field Survey for Waste Oil Refineries and Appraisal of Process and Non-Process Waste Management

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1316298

Abstract

The accurate and realistic data on waste generation is needed to make improvements in the effective and efficient management of waste including the application of 4R (reduce, reuse, recycle and recover). However, due to the lack of detailed data for estimating sectoral-based waste amounts in waste statistics, inappropriate waste generation factors are used for different sectors and unrealistic results can be obtained in this case. For this reason, it is necessary to develop the field-based waste generation factors that can be valid for regional or country-wide sector-based waste generation. Accurate estimation of the amount of waste generated as a result of refining is crucial for the waste oil sector, which has significant environmental and economic value. The aim of our study was to develop the waste generation factors for process and non-process wastes that may originate from rapidly growing waste oil refineries because of its potential to cause serious harm (H3B-flammable, H13-leachate with hazardous properties, H14-ecotoxic) to humans and the environment and evaluation within the scope of “Waste Management Regulation”. To evaluate waste generation within the scope of the study, the ten-waste oil-refining plants were investigated through field survey and site-specific engineering analysis (regulatory review, licensing and qualification). Using the field survey approach, the performed calculations showed that the highest waste generation factors were found in acid tars (19 11 02*), sludge’s from physico/chemical treatment containing dangerous substances (19 02 05*) and sludges from on-site effluent treatment containing dangerous substances (19 11 05*) with generation rates between 0,0072-0,0402, 0,0069-0,0404 and 0,0310 kg of waste per kg of waste oil, respectively. These are recyclable wastes type that can be re-processed and made new products. The availability of this strategically important information will offer a surplus opportunity for increasing profits from the refining of waste oils. However, there is still a long way to attain full circular economy. As a result, the developed waste generation factors will form the basis for waste management and will contribute to the establishment of a decision support mechanism for the authorities by helping to monitor and predict the annual waste amounts that may arise from the sector. Moreover, it's important to note that this current study has, for the first time, revealed the types and quantities of waste present in waste oil refineries.

References

  • [1] Hutchings, I. and Shipway, P., “Friction and Wear of Engineering Materials”, Elsevier Ltd., (2017).
  • [2] Jameel, A.G.A. and Sarathy, S.M., “Lube Products: Molecular Characterization of Base Oils”, Wiley, (2018).
  • [3] https://www.petroleumhpv.org/petroleum-substances-and-categories/lubricating-oils
  • [4] Xie, M., Tan, H. and Zhao, G., “A clean and sustainable strategy to produce bio-lubricant with high-bearing and good anti-oxidation ability from Lanzhou lily”, Journal of Cleaner Production, 371 (133333), 1-15, (2022).
  • [5] https://www.grandviewresearch.com/industry-analysis/lubricants-market#:~:text=The%20global%20lubricants%20market%20size,demand%20for%20bio%2Dbased%20lubricants
  • [6] https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Oil_and_petroleum_products_-_a_statistical_overview&oldid=315177#Consumption_in_sectors.
  • [7] https://chemicalmarketforecast.com/report/european-lubricants-market-and-technology-forecast-2020- 2029/#:~:text=The%20European%20Lubricants%20Market%20attained,the%20forecast%20period%202021%2D2029.
  • [8] https://www.petder.org.tr/Uploads/Document/52b69ce1-56c0-4bb3-b647-543f4b872cee.pdf?v-637768025270499593.
  • [9] İstanbul Kimyevi Maddeler ve Mamulleri İhracatçıları Birliği, “Madeni Yağlar ve Mineral Yakıtlar Sektör Raporu”, İKMİB, (2021).
  • [10] https://www.grandviewresearch.com/industry-analysis/us-lubricants-market
  • [11] https://www.statista.com/statistics/821076/lubricants-global-market-volume-by-country/
  • [12] https://www.emergenresearch.com/industry-report/lubricants-market
  • [13] https://www.statista.com/statistics/720677/lubricants-demand-per-capita-worldwide-by-region/
  • [14] Nowak, P., Kucharska, K. and Kamiński, M., “Ecological and Health Effects of Lubricant Oils Emitted into the Environment”, Int J Environ Res Public Health,16 (16): 3002, 1-13, (2019).
  • [15] https://www.infineuminsight.com/en-gb/articles/base-stocks/neste-prioritises-sustainability/
  • [16] Trzepieciński, T., “Tribological Performance of Environmentally Friendly Bio-Degradable Lubricants Based on a Combination of Boric Acid and Bio-Based Oils”, Materials, 13 (17), 3892, (2020).
  • [17] Ssempebwa, J. C. and Carpenter, D. O., “The generation, use and disposal of waste crankcase oil in developing countries: a case for Kampala district, Uganda”, Journal of Hazardous Materials, 161 (2-3): 835-41, (2009).
  • [18] US Environmental Protection Agency, “Hazardous waste management system; burning of waste fuel and used oil in boilers and industrial furnaces Fed Regist”, EPA, USA, (1985).
  • [19] Kanokkantapong, V., Kiatkittipong, W., Panyapinyopol, B., Wongsuchoto, P. and Pavasant, P., “Used lubricating oil management options based on life cycle thinking”, Resources, Conservation and Recycling, 53(5), 294-299, (2009).
  • [20] Akintunde, W.O., Olugbenga, O.A. and Olufemi, O.O., “Some Adverse Effects of Used Engine Oil (Common Waste Pollutant) On Reproduction of Male Sprague Dawley Rats”, Open Access Macedonian Journal of Medical Sciences, 3(1): 46-51, (2015).
  • [21] Abdullah, N. M. B. T, Aluwi, N. S. B. M., Park, H. and Kamal, N. B. A., “Effect of Toxicity Concentration of Waste Lubricating Oil (Hazardous Noxious Substances) on Aquatic Life”, International Journal of Engineering & Technology, 7 (3.11), 117-120, (2018).
  • [22] Mousazade, M. R., Sedighi, M. , Khoshgoftar Manesh, M. H. and Ghasemi, M., “Mathematical Modeling of Waste Engine Oil Gasification for Synthesis Gas Production; Operating Parameters and Simulation”, International Journal of Thermodynamics , 25 (1) , 65-77, (2022).
  • [23] https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Waste_statistics
  • [24] https://webdosya.csb.gov.tr/db/ced/editordosya/tcdr_ tr_2015.pdf
  • [25] https://webdosya.csb.gov.tr/db/ced/icerikler/2018_yili_ tehlikeli_atik_istatistik_bulteni-23.03.2020-20200323143024.pdf
  • [26] https://environment.ec.europa.eu/topics/waste-and-recycling/waste-oil_en
  • [27] Sánchez-Alvarracín, C., Criollo-Bravo, J., Albuja-Arias, D., García-Ávila, F. and Pelaez-Samaniego, M.R., “Characterization of Used Lubricant Oil in a Latin-American Medium-Size City and Analysis of Options for Its Regeneration”, Recycling, 6, 10, (2021).
  • [28] Ucar, S., Karagöz, S., Yanik, J., Saǧlam, M., and Yüksel, M., "Copyrolysis of scrap tires with waste lubricant oil”, Fuel Processing Technology, 87, 53-58, (2005).
  • [29] Duđak, L., Milisavljević, S., Jocanović, M., Kiss, F., Šević, D., Karanović, V., and Orošnjak, M.D., “Life Cycle Assessment of Different Waste Lubrication Oil Management Options in Serbia”, Applied Sciences, 11, 6652, (2021).
  • [30] Botas, J. A., Moreno, J., Espada, J. J., Serrano, D.P. and Dufour, J., “Recycling of used lubricating oil: Evaluation of environmental and energy performance by LCA”, Resources, Conservation & Recycling, 125, 315-323, (2017).
  • [31] https://www.geir-rerefining.org/wp-content/uploads/GEIRpositionpaperWFD_2016_FINAL.pdf
  • [32] Grice, L. N., Nobel, C. E., Longshore, L., Huntley, R., and De Vierno, A., “Life Cycle Carbon Footprint of Re-Refined versus Base Oil That Is Not Re-Refined”, ACS Sustainable Chemistry & Engineering, 2, 158-164, (2014).
  • [33] https://www.geir-rerefining.org/members
  • [34] https://www.geir-rerefining.org/statistics/
  • [35] https://webdosya.csb.gov.tr/db/cygm/editordosya/Atik_ Yonetimi_Yonetmeligi-2017.docx
  • [36] Çelebi, S., Yetiş, Ü. and Ünlü, K., “Indetification of management strategies and generation factors for spent lead acid battery recovery plant wastes in Turkey”, Waste Management & Research, 37 (3): 199-209, (2018).
  • [37] Öncel, M. S., Bektaş, N., Bayar, S., Engin, G., Çalışkan, Y. and Salar, L., “Hazardous wastes and waste generation factors for plastic products manufacturing industries in Turkey”, Sustainable Environment Research, 27 (4): 188-194, (2017).
  • [38] Bayar, S., Bektaş, N., Öncel, M. S., Engin, G. O., Çalışkan, Y. and Çelebi, E. E., “Hazardous Wastes and Waste Generation Factors Originating from Battery and Accumulator Manufacturing Sector in Turkey”, The Open Waste Management Journal, 11: 12-18, (2018).
  • [39] Karahan, Ö., Taşli, R., Dulekgurgen, E. and Görgün, E., “Estimation of hazardous waste factors”, Desalination and Water Treatment, 26: 79-86, (2011).
  • [40] Demir, C., Yetiş, Ü. and Ünlü, K., “Identification of waste management strategies and waste generation factors for thermal power plant sector wastes in Turkey”, Waste Management & Research, 37 (3), 210-218, (2018).
  • [41] Küçük, E., Danacı, D. and Yetiş, Ü., “Waste Generation in Primary and Secondary Aluminum Sector in Turkey”, 5th International Conference On Sustainable Solid Waste Management, Greece, (2017).
  • [42] Beier, G., Kiefer, J. and Knopf, J., “Potentials of big data for corporate environmental management: A case study from the German automotive industry”, Journal of Industrial Ecology, 26: 336-349, (2020).
  • [43] Jafari, A.J. and Hassanpour, M., “Analysis and comparison of used lubricants, regenerative technologies in the World”, Resources, Conservation and Recycling, 103, 179-191, (2015).
  • [44] Kupareva, A., Mäki-Arvela, P. and Murzin, D. Y., “Technology for rerefining used lube oils applied in Europe: A review”, Journal of Chemical Technology and Biotechnology, 88, 1780-1793, (2013).
  • [45] [45] Wu, X., Yue, B., Su, Y., Wang, Q., Huang, Q., Wang, Q. and Cai H., “Pollution characteristics of polycyclic aromatic hydrocarbons in common used mineral oils and their transformation during oil regeneration”, Journal of Environmental Sciences, 56: 247-253, (2017).
  • [46] [46] Fiedler, H., “Guidance by source category: Annex C, Part III Source Categories Waste oil refineries”, United Nations Environment Programme, (2005).
  • [47] https://www.epa.gov/dioxin/common-sources-exposure-dioxin
  • [48] Al-Mutairi, N., Bufarsan, A. and Al-Rukaibi, F., “Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels”, Chemosphere, 74 (1):142-148, (2008).
  • [49] Bridjanian, H. and Sattarin, M., “Modern Recovery Methods in Used Oil Re-Refining”, Petroleum & Coal, 48, 40-43, (2006).
  • [50] Hu, G., Li, J. and Zeng, G. “Recent development in the treatment of oily sludge from petroleum industry: A review”, Journal of Hazardous Materials, 261, 470-490, (2013).
  • [51] https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/JRC113018_WT_Bref.pdf
  • [52] https://wedocs.unep.org/bitstream/handle/20.500.11822/ 8601/IETC_Waste_Oils_Compendium.pdf? sequence=3 &amp%3BisAllowed
  • [53] https://www.sor.com.au/wp-content/uploads/2020/03/There-refiningprocess.pdf
  • [54] https://www.hering-vpt.com/article/transformer-oil-filtration-system/
  • [55] Asgari, A., Nabizadeh, R., Mahvi, A.H., Nasseri, S., Dehghani, M.H., Nazmara, S. and Yaghmaeian, K., “Biodegradation of total petroleum hydrocarbons from acidic sludge produced by re-refinery industries of waste oil using in-vessel composting”, Journal of Environmental Health Science and Engineering, 27; 15:3, (2017).
  • [56] Yang, S., Zhang, J., Liu, Y. and Feng, W., “Biodegradation of hydrocarbons by Purpureocillium lilacinum and Penicillium chrysogenum from heavy oil sludge and their potential for bioremediation of contaminated soils”, International Biodeterioration & Biodegradation, 178 (2023), 105566, (2023).
  • [57] Al Zubaidi, I., Al Tamimi, A. and Al Zubaidi, M., “Applications of de-oiling and reactivation of spent clay”, Environmental Technology & Innovation, 21, 101182, (2021).
  • [58] Wang, Y. Z., Xu, H. L., Gao, L., Yan, M. M., Duan, H. L., Song, C. M., “Regeneration of spent lubricant refining clays by solvent extraction”, International Journal of Chemical Engineering, 207095, (2015).

Atık Yağ Rafinasyon Tesisleri için Saha Çalışmasına Dayalı Atık Üretim Faktörlerinin Geliştirilmesi, Proses ve Proses Dışı Atık Yönetiminin Değerlendirilmesi

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1316298

Abstract

Atıkların etkin ve verimli yönetiminde 4R (azalt, yeniden kullan, geri dönüştür ve geri kazan) uygulamaları da dahil olmak üzere iyileştirmeler yapılabilmesi amacıyla atık üretimine ilişkin doğru ve gerçekçi verilere ihtiyaç duyulmaktadır. Ancak atık istatistiklerinde sektörel bazlı atık miktarlarının tahmin edilebilmesi için hala günümüzde detay veriler bulunmaması nedeniyle uygun olmayan atık üretim faktörleri farklı sektörler için kullanılmakta ve bu durumda gerçekçi olmayan sonuçlar elde edilmektedir. Bu sebeple bölgesel veya ülke genelinde sektörel bazlı atık oluşumları için geçerli olabilecek, saha bazlı atık üretim faktörlerinin geliştirilmesine ihtiyaç duyulmaktadır. Çevresel ve ekonomik açıdan büyük öneme sahip atık yağ rafinasyon sektörü için de oluşan atık miktarlarının doğru tahmin edilmesi; toplama, işleme ve bertaraf sistemlerinin planlanabilmesi için oldukça önemlidir. Bu çalışmanın amacı da ülkemizde sayıları hızla artan atık yağ rafinasyon tesislerinden kaynaklanabilecek, insan ve çevreye ciddi zarar verme potansiyeline sahip (H3B-alevlenir, H13-hassaslaştırıcı ve H14-ekotoksik) proses ve proses dışı atıklar için atık üretim faktörlerinin geliştirilmesi ve atıkların “Atık Yönetimi Yönetmeliği” kapsamında değerlendirilmesidir. Bu kapsamda atık üretiminin değerlendirilmesi amacıyla 10 adet atık yağ rafinasyon tesisi saha araştırması ve tesise özel mühendislik analizleriyle incelenmiştir (mevzuat inceleme, lisanslama ve atık nitelik belirleme). Saha çalışmalarına dayalı gerçekleştirilen hesaplamalar, en yüksek atık üretim faktörlerinin kilogram atık yağ başına sırasıyla; 0,0072-0,0402, 0,0069-0,0404 ve 0,0310 kg ile asit katranlarında (19 11 02*), fiziksel ve kimyasal işlemlerden kaynaklanan tehlikeli maddeler içeren çamurlar (19 02 05*) ve saha içi atıksu arıtımından kaynaklanan tehlikeli maddeler içeren çamurlarda (19 11 05*) olduğunu göstermiştir. Bu atıklar yeniden proses edilerek yeni ürünlerin üretiminde kullanılabilecek geri dönüştürülebilir tipte atıklardır. Stratejik açıdan oldukça önemli olan bu bilgi, atık yağların rafine edilmesinden elde edilen kazanımları artırmak için büyük bir fırsat sunmaktadır. Ancak döngüsel ekonominin tam olarak uygulanması için hala uzun bir yol bulunmaktadır. Sonuç olarak geliştirilen atık üretim faktörleri atık yönetimine temel teşkil edecek olup, sektörden kaynaklanabilecek yıllık atık miktarlarının izlenmesi ve tahmin edilmesine yardımcı olarak, yetkililer için karar destek mekanizması oluşturulmasına önemli katkılar sağlayacaktır. Bununla birlikte, atık yağ rafinasyon tesislerinde oluşan atık türleri ve atık miktarlarının ilk kez bu çalışma ile ortaya konduğunun da altı çizilmelidir.

References

  • [1] Hutchings, I. and Shipway, P., “Friction and Wear of Engineering Materials”, Elsevier Ltd., (2017).
  • [2] Jameel, A.G.A. and Sarathy, S.M., “Lube Products: Molecular Characterization of Base Oils”, Wiley, (2018).
  • [3] https://www.petroleumhpv.org/petroleum-substances-and-categories/lubricating-oils
  • [4] Xie, M., Tan, H. and Zhao, G., “A clean and sustainable strategy to produce bio-lubricant with high-bearing and good anti-oxidation ability from Lanzhou lily”, Journal of Cleaner Production, 371 (133333), 1-15, (2022).
  • [5] https://www.grandviewresearch.com/industry-analysis/lubricants-market#:~:text=The%20global%20lubricants%20market%20size,demand%20for%20bio%2Dbased%20lubricants
  • [6] https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Oil_and_petroleum_products_-_a_statistical_overview&oldid=315177#Consumption_in_sectors.
  • [7] https://chemicalmarketforecast.com/report/european-lubricants-market-and-technology-forecast-2020- 2029/#:~:text=The%20European%20Lubricants%20Market%20attained,the%20forecast%20period%202021%2D2029.
  • [8] https://www.petder.org.tr/Uploads/Document/52b69ce1-56c0-4bb3-b647-543f4b872cee.pdf?v-637768025270499593.
  • [9] İstanbul Kimyevi Maddeler ve Mamulleri İhracatçıları Birliği, “Madeni Yağlar ve Mineral Yakıtlar Sektör Raporu”, İKMİB, (2021).
  • [10] https://www.grandviewresearch.com/industry-analysis/us-lubricants-market
  • [11] https://www.statista.com/statistics/821076/lubricants-global-market-volume-by-country/
  • [12] https://www.emergenresearch.com/industry-report/lubricants-market
  • [13] https://www.statista.com/statistics/720677/lubricants-demand-per-capita-worldwide-by-region/
  • [14] Nowak, P., Kucharska, K. and Kamiński, M., “Ecological and Health Effects of Lubricant Oils Emitted into the Environment”, Int J Environ Res Public Health,16 (16): 3002, 1-13, (2019).
  • [15] https://www.infineuminsight.com/en-gb/articles/base-stocks/neste-prioritises-sustainability/
  • [16] Trzepieciński, T., “Tribological Performance of Environmentally Friendly Bio-Degradable Lubricants Based on a Combination of Boric Acid and Bio-Based Oils”, Materials, 13 (17), 3892, (2020).
  • [17] Ssempebwa, J. C. and Carpenter, D. O., “The generation, use and disposal of waste crankcase oil in developing countries: a case for Kampala district, Uganda”, Journal of Hazardous Materials, 161 (2-3): 835-41, (2009).
  • [18] US Environmental Protection Agency, “Hazardous waste management system; burning of waste fuel and used oil in boilers and industrial furnaces Fed Regist”, EPA, USA, (1985).
  • [19] Kanokkantapong, V., Kiatkittipong, W., Panyapinyopol, B., Wongsuchoto, P. and Pavasant, P., “Used lubricating oil management options based on life cycle thinking”, Resources, Conservation and Recycling, 53(5), 294-299, (2009).
  • [20] Akintunde, W.O., Olugbenga, O.A. and Olufemi, O.O., “Some Adverse Effects of Used Engine Oil (Common Waste Pollutant) On Reproduction of Male Sprague Dawley Rats”, Open Access Macedonian Journal of Medical Sciences, 3(1): 46-51, (2015).
  • [21] Abdullah, N. M. B. T, Aluwi, N. S. B. M., Park, H. and Kamal, N. B. A., “Effect of Toxicity Concentration of Waste Lubricating Oil (Hazardous Noxious Substances) on Aquatic Life”, International Journal of Engineering & Technology, 7 (3.11), 117-120, (2018).
  • [22] Mousazade, M. R., Sedighi, M. , Khoshgoftar Manesh, M. H. and Ghasemi, M., “Mathematical Modeling of Waste Engine Oil Gasification for Synthesis Gas Production; Operating Parameters and Simulation”, International Journal of Thermodynamics , 25 (1) , 65-77, (2022).
  • [23] https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Waste_statistics
  • [24] https://webdosya.csb.gov.tr/db/ced/editordosya/tcdr_ tr_2015.pdf
  • [25] https://webdosya.csb.gov.tr/db/ced/icerikler/2018_yili_ tehlikeli_atik_istatistik_bulteni-23.03.2020-20200323143024.pdf
  • [26] https://environment.ec.europa.eu/topics/waste-and-recycling/waste-oil_en
  • [27] Sánchez-Alvarracín, C., Criollo-Bravo, J., Albuja-Arias, D., García-Ávila, F. and Pelaez-Samaniego, M.R., “Characterization of Used Lubricant Oil in a Latin-American Medium-Size City and Analysis of Options for Its Regeneration”, Recycling, 6, 10, (2021).
  • [28] Ucar, S., Karagöz, S., Yanik, J., Saǧlam, M., and Yüksel, M., "Copyrolysis of scrap tires with waste lubricant oil”, Fuel Processing Technology, 87, 53-58, (2005).
  • [29] Duđak, L., Milisavljević, S., Jocanović, M., Kiss, F., Šević, D., Karanović, V., and Orošnjak, M.D., “Life Cycle Assessment of Different Waste Lubrication Oil Management Options in Serbia”, Applied Sciences, 11, 6652, (2021).
  • [30] Botas, J. A., Moreno, J., Espada, J. J., Serrano, D.P. and Dufour, J., “Recycling of used lubricating oil: Evaluation of environmental and energy performance by LCA”, Resources, Conservation & Recycling, 125, 315-323, (2017).
  • [31] https://www.geir-rerefining.org/wp-content/uploads/GEIRpositionpaperWFD_2016_FINAL.pdf
  • [32] Grice, L. N., Nobel, C. E., Longshore, L., Huntley, R., and De Vierno, A., “Life Cycle Carbon Footprint of Re-Refined versus Base Oil That Is Not Re-Refined”, ACS Sustainable Chemistry & Engineering, 2, 158-164, (2014).
  • [33] https://www.geir-rerefining.org/members
  • [34] https://www.geir-rerefining.org/statistics/
  • [35] https://webdosya.csb.gov.tr/db/cygm/editordosya/Atik_ Yonetimi_Yonetmeligi-2017.docx
  • [36] Çelebi, S., Yetiş, Ü. and Ünlü, K., “Indetification of management strategies and generation factors for spent lead acid battery recovery plant wastes in Turkey”, Waste Management & Research, 37 (3): 199-209, (2018).
  • [37] Öncel, M. S., Bektaş, N., Bayar, S., Engin, G., Çalışkan, Y. and Salar, L., “Hazardous wastes and waste generation factors for plastic products manufacturing industries in Turkey”, Sustainable Environment Research, 27 (4): 188-194, (2017).
  • [38] Bayar, S., Bektaş, N., Öncel, M. S., Engin, G. O., Çalışkan, Y. and Çelebi, E. E., “Hazardous Wastes and Waste Generation Factors Originating from Battery and Accumulator Manufacturing Sector in Turkey”, The Open Waste Management Journal, 11: 12-18, (2018).
  • [39] Karahan, Ö., Taşli, R., Dulekgurgen, E. and Görgün, E., “Estimation of hazardous waste factors”, Desalination and Water Treatment, 26: 79-86, (2011).
  • [40] Demir, C., Yetiş, Ü. and Ünlü, K., “Identification of waste management strategies and waste generation factors for thermal power plant sector wastes in Turkey”, Waste Management & Research, 37 (3), 210-218, (2018).
  • [41] Küçük, E., Danacı, D. and Yetiş, Ü., “Waste Generation in Primary and Secondary Aluminum Sector in Turkey”, 5th International Conference On Sustainable Solid Waste Management, Greece, (2017).
  • [42] Beier, G., Kiefer, J. and Knopf, J., “Potentials of big data for corporate environmental management: A case study from the German automotive industry”, Journal of Industrial Ecology, 26: 336-349, (2020).
  • [43] Jafari, A.J. and Hassanpour, M., “Analysis and comparison of used lubricants, regenerative technologies in the World”, Resources, Conservation and Recycling, 103, 179-191, (2015).
  • [44] Kupareva, A., Mäki-Arvela, P. and Murzin, D. Y., “Technology for rerefining used lube oils applied in Europe: A review”, Journal of Chemical Technology and Biotechnology, 88, 1780-1793, (2013).
  • [45] [45] Wu, X., Yue, B., Su, Y., Wang, Q., Huang, Q., Wang, Q. and Cai H., “Pollution characteristics of polycyclic aromatic hydrocarbons in common used mineral oils and their transformation during oil regeneration”, Journal of Environmental Sciences, 56: 247-253, (2017).
  • [46] [46] Fiedler, H., “Guidance by source category: Annex C, Part III Source Categories Waste oil refineries”, United Nations Environment Programme, (2005).
  • [47] https://www.epa.gov/dioxin/common-sources-exposure-dioxin
  • [48] Al-Mutairi, N., Bufarsan, A. and Al-Rukaibi, F., “Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels”, Chemosphere, 74 (1):142-148, (2008).
  • [49] Bridjanian, H. and Sattarin, M., “Modern Recovery Methods in Used Oil Re-Refining”, Petroleum & Coal, 48, 40-43, (2006).
  • [50] Hu, G., Li, J. and Zeng, G. “Recent development in the treatment of oily sludge from petroleum industry: A review”, Journal of Hazardous Materials, 261, 470-490, (2013).
  • [51] https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/JRC113018_WT_Bref.pdf
  • [52] https://wedocs.unep.org/bitstream/handle/20.500.11822/ 8601/IETC_Waste_Oils_Compendium.pdf? sequence=3 &amp%3BisAllowed
  • [53] https://www.sor.com.au/wp-content/uploads/2020/03/There-refiningprocess.pdf
  • [54] https://www.hering-vpt.com/article/transformer-oil-filtration-system/
  • [55] Asgari, A., Nabizadeh, R., Mahvi, A.H., Nasseri, S., Dehghani, M.H., Nazmara, S. and Yaghmaeian, K., “Biodegradation of total petroleum hydrocarbons from acidic sludge produced by re-refinery industries of waste oil using in-vessel composting”, Journal of Environmental Health Science and Engineering, 27; 15:3, (2017).
  • [56] Yang, S., Zhang, J., Liu, Y. and Feng, W., “Biodegradation of hydrocarbons by Purpureocillium lilacinum and Penicillium chrysogenum from heavy oil sludge and their potential for bioremediation of contaminated soils”, International Biodeterioration & Biodegradation, 178 (2023), 105566, (2023).
  • [57] Al Zubaidi, I., Al Tamimi, A. and Al Zubaidi, M., “Applications of de-oiling and reactivation of spent clay”, Environmental Technology & Innovation, 21, 101182, (2021).
  • [58] Wang, Y. Z., Xu, H. L., Gao, L., Yan, M. M., Duan, H. L., Song, C. M., “Regeneration of spent lubricant refining clays by solvent extraction”, International Journal of Chemical Engineering, 207095, (2015).
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Volkan Pelitli 0000-0001-7332-4151

Hansu Julide Köroğlu 0000-0002-7352-8717

Early Pub Date November 23, 2024
Publication Date
Submission Date June 18, 2023
Published in Issue Year 2025 EARLY VIEW

Cite

APA Pelitli, V., & Köroğlu, H. J. (2024). Atık Yağ Rafinasyon Tesisleri için Saha Çalışmasına Dayalı Atık Üretim Faktörlerinin Geliştirilmesi, Proses ve Proses Dışı Atık Yönetiminin Değerlendirilmesi. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1316298
AMA Pelitli V, Köroğlu HJ. Atık Yağ Rafinasyon Tesisleri için Saha Çalışmasına Dayalı Atık Üretim Faktörlerinin Geliştirilmesi, Proses ve Proses Dışı Atık Yönetiminin Değerlendirilmesi. Politeknik Dergisi. Published online November 1, 2024:1-1. doi:10.2339/politeknik.1316298
Chicago Pelitli, Volkan, and Hansu Julide Köroğlu. “Atık Yağ Rafinasyon Tesisleri için Saha Çalışmasına Dayalı Atık Üretim Faktörlerinin Geliştirilmesi, Proses Ve Proses Dışı Atık Yönetiminin Değerlendirilmesi”. Politeknik Dergisi, November (November 2024), 1-1. https://doi.org/10.2339/politeknik.1316298.
EndNote Pelitli V, Köroğlu HJ (November 1, 2024) Atık Yağ Rafinasyon Tesisleri için Saha Çalışmasına Dayalı Atık Üretim Faktörlerinin Geliştirilmesi, Proses ve Proses Dışı Atık Yönetiminin Değerlendirilmesi. Politeknik Dergisi 1–1.
IEEE V. Pelitli and H. J. Köroğlu, “Atık Yağ Rafinasyon Tesisleri için Saha Çalışmasına Dayalı Atık Üretim Faktörlerinin Geliştirilmesi, Proses ve Proses Dışı Atık Yönetiminin Değerlendirilmesi”, Politeknik Dergisi, pp. 1–1, November 2024, doi: 10.2339/politeknik.1316298.
ISNAD Pelitli, Volkan - Köroğlu, Hansu Julide. “Atık Yağ Rafinasyon Tesisleri için Saha Çalışmasına Dayalı Atık Üretim Faktörlerinin Geliştirilmesi, Proses Ve Proses Dışı Atık Yönetiminin Değerlendirilmesi”. Politeknik Dergisi. November 2024. 1-1. https://doi.org/10.2339/politeknik.1316298.
JAMA Pelitli V, Köroğlu HJ. Atık Yağ Rafinasyon Tesisleri için Saha Çalışmasına Dayalı Atık Üretim Faktörlerinin Geliştirilmesi, Proses ve Proses Dışı Atık Yönetiminin Değerlendirilmesi. Politeknik Dergisi. 2024;:1–1.
MLA Pelitli, Volkan and Hansu Julide Köroğlu. “Atık Yağ Rafinasyon Tesisleri için Saha Çalışmasına Dayalı Atık Üretim Faktörlerinin Geliştirilmesi, Proses Ve Proses Dışı Atık Yönetiminin Değerlendirilmesi”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1316298.
Vancouver Pelitli V, Köroğlu HJ. Atık Yağ Rafinasyon Tesisleri için Saha Çalışmasına Dayalı Atık Üretim Faktörlerinin Geliştirilmesi, Proses ve Proses Dışı Atık Yönetiminin Değerlendirilmesi. Politeknik Dergisi. 2024:1-.