Research Article
BibTex RIS Cite

Effects of Heat Treatment on Microstructure and Impact Resistance of High Manganese Steels

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1363853

Abstract

High manganese steels are widely used as wear- and impact-resistant materials in many areas, especially in the mining, construction, cement, and metallurgy sectors, where it is extremely important to be able to work safely in high-stress conditions as well as resistance to abrasion under heavy loading conditions thanks to their unique work-hardening performance. At this point, the carbon and manganese ratio of the material has a considerable influence on the microstructure of the cast part after the heat treatment. Therefore, heat treatment conditions have to be determined appropriately depending on the chemical composition of the material. In this study, heat treatment processes were applied to high manganese steel specimens having GX120MnCr18-2 DIN standard at various austenitizing temperatures between 1030~1100 oC. The specimens were examined under an optical microscope and SEM/EDS analyses were performed. Impact resistance and hardness values of the above-mentioned specimens were measured via the tests performed with TS EN ISO 148-1 and TS EN 130 6508-1 standards, respectively. From these investigations, it was determined that the carbide solubility increased as the austenitizing temperature increased while the impact resistance first increased and then decreased.

References

  • [1]Sevsek, S., Brasche, F., Molodov, D. A. and Bleck, W., “On the influence of grain size on the TWIP/TRIP-effect and texture development in high-manganese steels”, Materials Science and Engineering: A, 754, 152-160, (2019).
  • [2] Jacob, R., Sankaranarayanan, S. R. and Babu, S. K., “Recent advancements in manganese steels–A review”, Materials Today: Proceedings, 27, 2852-2858, (2020).
  • [3] Kang, J. H., Ingendahl, T., von Appen, J., Dronskowski, R. and Bleck, W., “Impact of short-range ordering on yield strength of high manganese austenitic steels”, Materials Science and Engineering: A, 614, 122-128, (2014).
  • [4] Gumus, B., Bal, B., Gerstein, G., Canadinc, D., Maier, H. J., Guner, F. and Elmadagli, M., “Twinning activities in high-Mn austenitic steels under high-velocity compressive loading”, Materials Science and Engineering: A, 648, 104-112, (2015).
  • [5] Wen, Y. H., Peng, H. B., Si, H. T., Xiong, R. L. and Raabe, D., “A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel”, Materials & Design, 55, 798-804, (2014).
  • [6] Behjati, P., Kermanpur, A., Najafizadeh, A., Baghbadorani, H. S., Jung, J. G. and Lee, Y. K., “Enhanced mechanical properties in a high-manganese austenitic steel through formation of nano grains, nanotwinned austenite grains, nano carbides and TRIP”, Materials Science and Engineering: A, 610, 273-278, (2014).
  • [7] Behjati, P., Kermanpur, A., Najafizadeh, A., Baghbadorani, H. S., Jung, J. G. and Lee, Y. K., “Influence of precooling and deformation temperature on microstructure and mechanical properties in a high-manganese austenitic steel”, Materials Science and Engineering: A, 614, 232-237, (2014).
  • [8] Lindroos, M., Laukkanen, A., Cailletaud, G. and Kuokkala, V. T., “On the effect of deformation twinning and microstructure to strain hardening of high manganese austenitic steel 3D microstructure aggregates at large strains”, International Journal of Solids and Structures, 125, 68-76, (2017).
  • [9] Lv, B., Zhang, F. C., Li, M., Hou, R. J., Qian, L. H. and Wang, T. S., “Effects of phosphorus and sulfur on the thermoplasticity of high manganese austenitic steel”, Materials Science and Engineering: A, 527(21-22), 5648-5653, (2010).
  • [10] Toker, S. M., Canadinc, D., Taube, A., Gerstein, G. and Maier, H. J., “On the role of slip–twin interactions on the impact behavior of high-manganese austenitic steels”, Materials Science and Engineering: A, 593, 120-126, (2014).
  • [11] Vats, V., Baskaran, T. and Arya, S. B., “Tribo-corrosion study of nickel-free, high nitrogen and high manganese austenitic stainless steel”, Tribology International, 119, 659-666, (2018).
  • [12] Anijdan, S. M. and Sabzi, M., “The effect of heat treatment process parameters on mechanical properties, precipitation, fatigue life, and fracture mode of an austenitic Mn Hadfield steel”, Journal of Materials Engineering and Performance, 27(10), 5246-5253, (2018).
  • [13] Luo, Z. C., Ning, J. P., Wang, J. and Zheng, K. H., “Microstructure and wear properties of TiC-strengthened high-manganese steel matrix composites fabricated by hypereutectic solidification”, Wear, 432, 202970, (2019).
  • [14] Jafarian, H. R., Sabzi, M., Anijdan, S. M., Eivani, A. R. and Park, N., “The influence of austenitization temperature on microstructural developments, mechanical properties, fracture mode and wear mechanism of Hadfield high manganese steel”, Journal of Materials Research and Technology, 10, 819-831, (2021).
  • [15] Hai, N. H., Trung, N. D., Khanh, P. M., Dung, N. H. and Long, B. D., “Strain hardening of Hadfield high manganese steels”, Materials Today: Proceedings, 66, 2933-2937, (2022).
  • [16] Dalai, R., Das, S. and Das, K., “Effect of thermo-mechanical processing on the low impact abrasion and low stress sliding wear resistance of austenitic high manganese steels”, Wear, 420, 176-183, (2019).
  • [17] Yuan, X., Chen, L., Zhao, Y., Di, H. and Zhu, F., “Dependence of grain size on mechanical properties and microstructures of high manganese austenitic steel”, Procedia Engineering, 81, 143-148, (2014).
  • [18] Jablonska, M. B. and Kowalczyk, K., “Microstructural aspects of energy absorption of high manganese steels”, Procedia Manufacturing, 27, 91-97, (2019).
  • [19] Lee, S. I., Lee, S. Y., Han, J. and Hwang, B., “Deformation behavior and tensile properties of an austenitic Fe-24Mn-4Cr-0.5 C high-manganese steel: Effect of grain size”, Materials Science and Engineering: A, 742, 334-343, (2019).
  • [20] Yuan, X., Chen, L., Zhao, Y., Di, H. and Zhu, F., “Influence of annealing temperature on mechanical properties and microstructures of a high manganese austenitic steel”, Journal of Materials Processing Technology, 217, 278-285, (2015).
  • [21] Grajcar, A. and Borek, W., “Thermo-mechanical processing of high-manganese austenitic TWIP-type steels”, Archives of Civil and Mechanical Engineering, 8(4), 29-38, (2008).
  • [22] Dini, G., Najafizadeh, A., Ueji, R. and Monir-Vaghefi, S. M., “Tensile deformation behavior of high manganese austenitic steel: The role of grain size”, Materials & Design, 31(7), 3395-3402, (2010).
  • [23] Jimenez, J. A. and Frommeyer, G., “Analysis of the microstructure evolution during tensile testing at room temperature of high-manganese austenitic steel”, Materials Characterization, 61(2), 221-226, (2010).
  • [24] Bayraktar, E., Khalid, F. A. and Levaillant, C., “Deformation and fracture behaviour of high manganese austenitic steel”, Journal of Materials Processing Technology, 147(2), 145-154, (2004).
  • [25] Nam, Y. H., Park, J. S., Baek, U. B., Suh, J. Y. and Nahm, S. H., “Low-temperature tensile and impact properties of hydrogen-charged high-manganese steel”, International Journal of Hydrogen Energy, 44(13), 7000-7013, (2019).
  • [26] Falodun, O. E., Oke, S. R., Okoro, A. M. and Olubambi, P. A., “Characterization of cast manganese steels containing varying manganese and chromium additions”, Materials Today: Proceedings, 28, 730-733, (2020).
  • [27] Zheng, Z. B., Yang, H. K., Shatrava, A. P., Long, J., Wang, Y. H., Li, J. X. and Zheng, K. H., “Work hardening behavior and fracture mechanisms of Fe-18Mn-1.3 C-2Cr low-density steel castings with varying proportions of aluminum alloying”, Materials Science and Engineering: A, 144467, (2022).
  • [28] Akar N. and Celik F. D. G., “Santrifüj hassas döküm yöntemiyle üretilen co-cr-mo süperalaşım dental blokların mikroyapı ve mekanik özellikleri üzerine atmosfer ve karbon miktarının etkisi”, Journal of Polytechnic, 25(4), 1435-1446, (2022).
  • [29] Ozer, I. and Kurt, A., “Mekanik alaşımlama yöntemi ile demir ve bakırın alaşımlanması”, Journal of Polytechnic, 26(2), 839-845, (2023).
  • [30] Pamuk O., Demir U. and Aksoz S., “Toz metalurjisi yöntemi ile üretilen Fe esaslı kompozit malzemelerde vakum sementasyon işleminin sinterlenebilirlik ve mekanik özelliklere etkisinin incelenmesi”, Journal of Polytechnic, 26(2), 641-651, (2023).
  • [31] Novikov, I. I., Metallerin Isıl İşlem Teorisi, Nobel Yayıncılık, Ankara, (2012).

Isıl İşlemin Yüksek Manganlı Çeliklerin Mikroyapısı ve Darbe Direnci Üzerindeki Etkileri

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1363853

Abstract

Yüksek manganlı çelikler, yüksek gerilme koşullarında güvenli bir şekilde çalışabilmenin son derece önemli olduğu madencilik, inşaat, çimento ve metalürji sektörleri başta olmak üzere birçok alanda aşınmaya ve darbeye dayanıklı malzemeler olarak yaygın şekilde kullanılmaktadır. Bu noktada, malzemenin karbon ve manganez oranı, ısıl işlem sonrasında döküm parçanın mikroyapısı üzerinde önemli bir etkiye sahiptir. Bu nedenle ısıl işlem koşullarının malzemenin kimyasal bileşimine göre uygun şekilde belirlenmesi gerekmektedir. Bu çalışmada GX120MnCr18-2 DIN standardına sahip yüksek manganlı çelik numunelere 1030~1100 oC arasındaki çeşitli östenitleme sıcaklıklarında ısıl işlemler uygulanmıştır. Numuneler optik mikroskopta incelenerek SEM/EDS analizleri gerçekleştirilmiştir. Yukarıda bahsi geçen numunelerin darbe dayanımı ve sertlik değerleri sırasıyla TS EN ISO 148-1 ve TS EN 130 6508-1 standartlarına göre yapılan testler ile ölçülmüştür. Bu incelemelerden östenitleme sıcaklığı arttıkça karbür çözünürlüğünün arttığı, darbe dayanımının ise önce arttığı daha sonra azaldığı görülmüştür.

References

  • [1]Sevsek, S., Brasche, F., Molodov, D. A. and Bleck, W., “On the influence of grain size on the TWIP/TRIP-effect and texture development in high-manganese steels”, Materials Science and Engineering: A, 754, 152-160, (2019).
  • [2] Jacob, R., Sankaranarayanan, S. R. and Babu, S. K., “Recent advancements in manganese steels–A review”, Materials Today: Proceedings, 27, 2852-2858, (2020).
  • [3] Kang, J. H., Ingendahl, T., von Appen, J., Dronskowski, R. and Bleck, W., “Impact of short-range ordering on yield strength of high manganese austenitic steels”, Materials Science and Engineering: A, 614, 122-128, (2014).
  • [4] Gumus, B., Bal, B., Gerstein, G., Canadinc, D., Maier, H. J., Guner, F. and Elmadagli, M., “Twinning activities in high-Mn austenitic steels under high-velocity compressive loading”, Materials Science and Engineering: A, 648, 104-112, (2015).
  • [5] Wen, Y. H., Peng, H. B., Si, H. T., Xiong, R. L. and Raabe, D., “A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel”, Materials & Design, 55, 798-804, (2014).
  • [6] Behjati, P., Kermanpur, A., Najafizadeh, A., Baghbadorani, H. S., Jung, J. G. and Lee, Y. K., “Enhanced mechanical properties in a high-manganese austenitic steel through formation of nano grains, nanotwinned austenite grains, nano carbides and TRIP”, Materials Science and Engineering: A, 610, 273-278, (2014).
  • [7] Behjati, P., Kermanpur, A., Najafizadeh, A., Baghbadorani, H. S., Jung, J. G. and Lee, Y. K., “Influence of precooling and deformation temperature on microstructure and mechanical properties in a high-manganese austenitic steel”, Materials Science and Engineering: A, 614, 232-237, (2014).
  • [8] Lindroos, M., Laukkanen, A., Cailletaud, G. and Kuokkala, V. T., “On the effect of deformation twinning and microstructure to strain hardening of high manganese austenitic steel 3D microstructure aggregates at large strains”, International Journal of Solids and Structures, 125, 68-76, (2017).
  • [9] Lv, B., Zhang, F. C., Li, M., Hou, R. J., Qian, L. H. and Wang, T. S., “Effects of phosphorus and sulfur on the thermoplasticity of high manganese austenitic steel”, Materials Science and Engineering: A, 527(21-22), 5648-5653, (2010).
  • [10] Toker, S. M., Canadinc, D., Taube, A., Gerstein, G. and Maier, H. J., “On the role of slip–twin interactions on the impact behavior of high-manganese austenitic steels”, Materials Science and Engineering: A, 593, 120-126, (2014).
  • [11] Vats, V., Baskaran, T. and Arya, S. B., “Tribo-corrosion study of nickel-free, high nitrogen and high manganese austenitic stainless steel”, Tribology International, 119, 659-666, (2018).
  • [12] Anijdan, S. M. and Sabzi, M., “The effect of heat treatment process parameters on mechanical properties, precipitation, fatigue life, and fracture mode of an austenitic Mn Hadfield steel”, Journal of Materials Engineering and Performance, 27(10), 5246-5253, (2018).
  • [13] Luo, Z. C., Ning, J. P., Wang, J. and Zheng, K. H., “Microstructure and wear properties of TiC-strengthened high-manganese steel matrix composites fabricated by hypereutectic solidification”, Wear, 432, 202970, (2019).
  • [14] Jafarian, H. R., Sabzi, M., Anijdan, S. M., Eivani, A. R. and Park, N., “The influence of austenitization temperature on microstructural developments, mechanical properties, fracture mode and wear mechanism of Hadfield high manganese steel”, Journal of Materials Research and Technology, 10, 819-831, (2021).
  • [15] Hai, N. H., Trung, N. D., Khanh, P. M., Dung, N. H. and Long, B. D., “Strain hardening of Hadfield high manganese steels”, Materials Today: Proceedings, 66, 2933-2937, (2022).
  • [16] Dalai, R., Das, S. and Das, K., “Effect of thermo-mechanical processing on the low impact abrasion and low stress sliding wear resistance of austenitic high manganese steels”, Wear, 420, 176-183, (2019).
  • [17] Yuan, X., Chen, L., Zhao, Y., Di, H. and Zhu, F., “Dependence of grain size on mechanical properties and microstructures of high manganese austenitic steel”, Procedia Engineering, 81, 143-148, (2014).
  • [18] Jablonska, M. B. and Kowalczyk, K., “Microstructural aspects of energy absorption of high manganese steels”, Procedia Manufacturing, 27, 91-97, (2019).
  • [19] Lee, S. I., Lee, S. Y., Han, J. and Hwang, B., “Deformation behavior and tensile properties of an austenitic Fe-24Mn-4Cr-0.5 C high-manganese steel: Effect of grain size”, Materials Science and Engineering: A, 742, 334-343, (2019).
  • [20] Yuan, X., Chen, L., Zhao, Y., Di, H. and Zhu, F., “Influence of annealing temperature on mechanical properties and microstructures of a high manganese austenitic steel”, Journal of Materials Processing Technology, 217, 278-285, (2015).
  • [21] Grajcar, A. and Borek, W., “Thermo-mechanical processing of high-manganese austenitic TWIP-type steels”, Archives of Civil and Mechanical Engineering, 8(4), 29-38, (2008).
  • [22] Dini, G., Najafizadeh, A., Ueji, R. and Monir-Vaghefi, S. M., “Tensile deformation behavior of high manganese austenitic steel: The role of grain size”, Materials & Design, 31(7), 3395-3402, (2010).
  • [23] Jimenez, J. A. and Frommeyer, G., “Analysis of the microstructure evolution during tensile testing at room temperature of high-manganese austenitic steel”, Materials Characterization, 61(2), 221-226, (2010).
  • [24] Bayraktar, E., Khalid, F. A. and Levaillant, C., “Deformation and fracture behaviour of high manganese austenitic steel”, Journal of Materials Processing Technology, 147(2), 145-154, (2004).
  • [25] Nam, Y. H., Park, J. S., Baek, U. B., Suh, J. Y. and Nahm, S. H., “Low-temperature tensile and impact properties of hydrogen-charged high-manganese steel”, International Journal of Hydrogen Energy, 44(13), 7000-7013, (2019).
  • [26] Falodun, O. E., Oke, S. R., Okoro, A. M. and Olubambi, P. A., “Characterization of cast manganese steels containing varying manganese and chromium additions”, Materials Today: Proceedings, 28, 730-733, (2020).
  • [27] Zheng, Z. B., Yang, H. K., Shatrava, A. P., Long, J., Wang, Y. H., Li, J. X. and Zheng, K. H., “Work hardening behavior and fracture mechanisms of Fe-18Mn-1.3 C-2Cr low-density steel castings with varying proportions of aluminum alloying”, Materials Science and Engineering: A, 144467, (2022).
  • [28] Akar N. and Celik F. D. G., “Santrifüj hassas döküm yöntemiyle üretilen co-cr-mo süperalaşım dental blokların mikroyapı ve mekanik özellikleri üzerine atmosfer ve karbon miktarının etkisi”, Journal of Polytechnic, 25(4), 1435-1446, (2022).
  • [29] Ozer, I. and Kurt, A., “Mekanik alaşımlama yöntemi ile demir ve bakırın alaşımlanması”, Journal of Polytechnic, 26(2), 839-845, (2023).
  • [30] Pamuk O., Demir U. and Aksoz S., “Toz metalurjisi yöntemi ile üretilen Fe esaslı kompozit malzemelerde vakum sementasyon işleminin sinterlenebilirlik ve mekanik özelliklere etkisinin incelenmesi”, Journal of Polytechnic, 26(2), 641-651, (2023).
  • [31] Novikov, I. I., Metallerin Isıl İşlem Teorisi, Nobel Yayıncılık, Ankara, (2012).
There are 31 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Casting Technologies, Material Production Technologies
Journal Section Research Article
Authors

Hakan Yıldırım 0000-0003-3845-7973

M. Emin Erdin 0000-0002-9274-3674

Ali Özgedik 0000-0003-4964-4264

Early Pub Date November 15, 2023
Publication Date
Submission Date September 20, 2023
Published in Issue Year 2024 EARLY VIEW

Cite

APA Yıldırım, H., Erdin, M. E., & Özgedik, A. (2023). Effects of Heat Treatment on Microstructure and Impact Resistance of High Manganese Steels. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1363853
AMA Yıldırım H, Erdin ME, Özgedik A. Effects of Heat Treatment on Microstructure and Impact Resistance of High Manganese Steels. Politeknik Dergisi. Published online November 1, 2023:1-1. doi:10.2339/politeknik.1363853
Chicago Yıldırım, Hakan, M. Emin Erdin, and Ali Özgedik. “Effects of Heat Treatment on Microstructure and Impact Resistance of High Manganese Steels”. Politeknik Dergisi, November (November 2023), 1-1. https://doi.org/10.2339/politeknik.1363853.
EndNote Yıldırım H, Erdin ME, Özgedik A (November 1, 2023) Effects of Heat Treatment on Microstructure and Impact Resistance of High Manganese Steels. Politeknik Dergisi 1–1.
IEEE H. Yıldırım, M. E. Erdin, and A. Özgedik, “Effects of Heat Treatment on Microstructure and Impact Resistance of High Manganese Steels”, Politeknik Dergisi, pp. 1–1, November 2023, doi: 10.2339/politeknik.1363853.
ISNAD Yıldırım, Hakan et al. “Effects of Heat Treatment on Microstructure and Impact Resistance of High Manganese Steels”. Politeknik Dergisi. November 2023. 1-1. https://doi.org/10.2339/politeknik.1363853.
JAMA Yıldırım H, Erdin ME, Özgedik A. Effects of Heat Treatment on Microstructure and Impact Resistance of High Manganese Steels. Politeknik Dergisi. 2023;:1–1.
MLA Yıldırım, Hakan et al. “Effects of Heat Treatment on Microstructure and Impact Resistance of High Manganese Steels”. Politeknik Dergisi, 2023, pp. 1-1, doi:10.2339/politeknik.1363853.
Vancouver Yıldırım H, Erdin ME, Özgedik A. Effects of Heat Treatment on Microstructure and Impact Resistance of High Manganese Steels. Politeknik Dergisi. 2023:1-.