Research Article
BibTex RIS Cite

CCT Diyagramları Modellenmesiyle Düşük ve Yüksek Karbonlu TRIP Çeliklerinin Üretimi, Mikroyapı Haritalarının Dizaynı ve Çekme özellikleri

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1382745

Abstract

TRIP çelikleri otomotiv endüstrisi için birinci nesil çelik olmasına rağmen yüksek mukavemeti, şekillendirilebilirliği ve şekillendirme sonrası mukavemeti çok yönlü ve yaygın olarak kullanılan otomotiv çeliğidir. Bu çalışma, otomotiv TRIP çeliklerinin üretim zincirlerini, ısıl süreçlerini, mikro yapılarını ve çekme özelliklerini, düşük maliyetli iki çelik grubu üzerinde deneysel modelleme (CCT diyagramları-mikro yapı haritaları) yoluyla değerlendirmeyi amaçlamaktadır. TRIP çeliklerinin üretim zincirleri kimyasal tasarım, hassas döküm, sıcak haddeleme ve TRIP termal proses modelleme ve uygulamalarıdır. Numuneler üzerinde gerçekleştirilen deneysel teknikler, yani karakterizasyonlar, görüntü analizi, XRD, sertlik ve çekme testleridir. Sonuçlar, beynitik tutmanın ardından havayla soğutma sırasında düşük alaşım içeriği nedeniyle az miktarda martenzit dönüşümünün meydana geldiğini gösterdi. Sonuç olarak, TRIP çelik sacın tasarımını ve üretimini gerçekleştirmek için modelleme ve mikro yapı haritaları başarıyla birleştirildi ve ayrıntılı olarak incelendi.

Supporting Institution

Karabuk Universtiy

Project Number

KBÜBAP-17-YL-431, KBÜ-BAP-13/2-DS-054

Thanks

The authors gratefully acknowledge the support of the Karabuk University Science Project Commission (KBU-BAP: KBÜBAP-17-YL-431, KBÜ-BAP-13/2-DS-054) and Assoc. Prof. Ersoy Erişir for software using.

References

  • [1] Ö. PAMUK, A. DURGUTLU, Patlama Kaynağı Yöntemi ile Birleştirilen Östenitik Paslanmaz Çelik (AISI 316L) – S235JR Kompozit Malzemelerde Patlayıcı Oranının Mikroyapı ve Yorulma Özelliklerine Etkisi, Politeknik Dergisi, 21, 527–534, (2018).
  • [2] A. Durgutlu, B. Gülenç, Patlama Kaynağıyla Paslanmaz Çelik – Bakır Levhaların Kaynaklanabilirliği Ve Patlayıcı Oranının Birleşme Arayüzeyine Etkisi, Politeknik Dergisi, 5, 243–248, (2002).
  • [3] M.S. Yıldırım, Y. Kaya, Investigation of The Joining Interface of Copper-Titanium Bimetallic Composite Materials Manufactured Using Explosive Welding Method, Journal of Polytechnic, (2022).
  • [4] B. Demir, An Investigation Of Producability Of Dual-Phase - PhD thesis, Gazi University, Ankara)., (2003).
  • [5] D.K. Matlock, J.G. Speer, Third Generation of AHSS: Microstructure Design Concepts, Microstructure and Texture in Steels, 185–205, (2009).
  • [6] J.-H. Schmitt, T. Iung, New developments of advanced high-strength steels for automotive applications, C R Phys, 19, 641–656, (2018).
  • [7] B. Demir, M. Erdoǧan, The hardenability of austenite with different alloy content and dispersion in dual-phase steels, J Mater Process Technol, 208, 75–84, (2008).
  • [8] B. Demir, M Erdoğan, Çift-Fazlı Çeliklerde Martensit Hacim Oranı Ve Morfolojisinin Çekme Özellikleri Üzerine Etkisi, Gazi Üniv. Fen Bil. Dergisi, vol: 11 no 4 s. 727, Ekim (1998).
  • [9] B. Demir, An investigation on the production of dual-phase steel from AISI4140 and its impact strength at different martensite volume fractions, Metallofizika i Noveishie Tekhnologii 29, (9), pp.1159 - 1166 (2007).
  • [10] B.C. De Cooman, Structure–properties relationship in TRIP steels containing carbide-free bainite, Curr Opin Solid State Mater Sci, 8, 285–303, (2004).
  • [11] A. Eres-Castellanos, C. Garcia-Mateo, F.G. Caballero, Future trends on displacive stress and strain induced transformations in steels, Metals, 11, 1–19, (2021).
  • [12] Y. Wang, Y. Xu, Y. Wang, J. Zhang, C. Guo, X. Wang, W. Zhao, H. Liu, Enhanced stretch flangeability and crack propagation behavior of an 1100 MPa grade TRIP-aided bainitic ferrite steel, Journal of Materials Research and Technology, 26, 5503–5517, (2023).
  • [13] D.K. Matlock, J.G. Speer, E. De Moor, P.J. Gibbs, Recent Developments In Advanced Hıgh Strength Sheet Steels For Automotive Applıcatıons: An Overview, JESTECH, 15, 1–12, (2012).
  • [14] J. Wang, S. Van der Zwaag, Stabilization mechanisms of retained austenite in transformation-induced plasticity steel, Metallurgical and Materials Transactions A, 2001, 32:6, 32, 1527–1539, (2001).
  • [15] G.N. Haidemenopoulos, A.N. Vasilakos, Modelling of austenite stability in low-alloy triple-phase steels, Steel Research, 67, 513–519, (1996).
  • [16] J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey, Effect of microstructure on retained austenite stability and work hardening of TRIP steels, Materials Science and Engineering: A, 528, 4516–4521, (2011).
  • [17] S.J. Kim, C.G. Lee, I. Choi, S. Lee, Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.15 wt pct C transformation-induced plasticity-aided cold-rolled steel sheets, Metall Mater Trans A Phys Metall Mater Sci, 32, 505–514, (2001).
  • [18] A. Ramazani, K. Mukherjee, U. Prahl, W. Bleck, Transformation-induced, geometrically necessary, dislocation-based flow curve modeling of dual-phase steels: Effect of grain size, Metall Mater Trans A Phys Metall Mater Sci, 43, 3850–3869, (2012).
  • [19] Keele Stuart and Kimchi Manachem, AHSS_Guidelines V5.0 20140514, WorldAutoSteel, (2014).
  • [20] Sugimoto, K. I., Nakashima, Y., Kobayashi, J., & Hojo, T. (2023). Effects of Partial Replacement of Si by Al on Impact Toughness of 0.2% C-Si-Mn-Cr-B TRIP-Aided Martensitic Steel. Metals, 13, (7), 1206, (2023).
  • [21] K.S. Choi, A. Soulami, W.N. Liu, X. Sun, M.A. Khaleel, Influence of various material design parameters on deformation behaviors of TRIP steels, Comput Mater Sci, 50, 720–730, (2010).
  • [22] X.D. Wang, B.X. Huang, Y.H. Rong, L. Wang, Microstructures and stability of retained austenite in TRIP steels, Materials Science and Engineering: A, 438–440, 300–305, (2006).
  • [23] O. Graè Ssel, L. Kruè Ger, G. Frommeyer, L.W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development of properties of application, International Journal of plasticity, 16.10-11: 1391-1409, (2000).
  • [24] M. Erdogan, R. Priestner, Effect of epitaxial ferrite on yielding and plastic flow in dual phase steel in tension and compression, Materials Science and Technology 15, 1273–1284. (1999).
  • [25] B. Demir, M. Erdogan, Tensile Properties Of The Hardenable Dual Phase Steel With Different Martensite Dispersion, JESTECH, 15, 13–19, (2012).
  • [26] B. Demir, M. Erdogan, Fracture Behaviour Of The Hardenable Dual Phase Steel With Different Martensite Dispersıons, JESTECH, 15, 97–103, (2012).
  • [27] M. Zhang, L. Li, R.Y. Fu, D. Krizan, B.C. De Cooman, Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels, Materials Science and Engineering: A, 438–440, 296–299, (2006).
  • [28] S. Chatterjee, Transformations in TRIP-assisted Steels: Microstructure and Properties, PhD Thesis (2006).
  • [29] Xie, Hao-jie, Xiao-chun Wu, and Yong-an Min. "Influence of chemical composition on phase transformation temperature and thermal expansion coefficient of hot work die steel." Journal of Iron and Steel Research International, 15, 6. 56-61, (2008).
  • [30] S.H. Atapek, E. Erişir, S. Gümüş, Modeling and thermal analysis of solidification in a low alloy steel, J Therm Anal Calorim, 114, 179–183, (2013).
  • [31] P.J. Jacques, E. Girault, P. Harlet, F. Delannay, The developments of cold-rolled TRIP-assisted multiphase steels. Low silicon TRIP-assisted multiphase steels, ISIJ International, 41, 1061–1067, (2001).
  • [32] A. Kozłowska, A. Grajcar, J. Opara, J. Kaczmarczyk, A. Janik, K. Radwański, Mechanical behaviour and micromechanical modelling of medium-Mn steel microstructure evolution, Int J Mech Sci 220 (2022).
  • [33] M. Erdogan, Effect of austenite dispersion on phase transformation in dual phase steel, Scr Mater, 48, 501–506, (2003).
  • [34] P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Van Humbeeck, F. Delannay, The developments of cold-rolled TRIP-assisted multiphase steels. Al-alloyed TRIP-assisted multiphase steels, ISIJ International, 41, 1068–1074, (2001).
  • [35] K.I. Sugimoto, D. Fiji, N. Yoshikawa, Fatigue strength of newly developed high-strength low alloy TRIP-aided steels with good hardenability, in: Procedia Eng, pp. 359–362, (2010).
  • [36] De Meyer, Marijke, Jan Mahieu, and B. C. De Cooman. "Empirical microstructure prediction method for combined intercritical annealing and bainitic transformation of TRIP steel.", Materials science and technology, 18, 10, 1121-1132, (2002).
  • [37] H. tao Jiang, W. Ding, D. Tang, W. Huang, Mechanical Property and Microstructural Characterization of C-Mn-Al-Si Hot Dip Galvanizing TRIP Steel, Journal of Iron and Steel Research International, 19, 29–36, (2012).
  • [38] P.P. Suikkanen, A.-J. Ristola, A.M. Hirvi, P. Sahu, Mahesh, C. Somani, D. Arthur, L.P. Karjalainen, Effects of carbon content and cooling path on the microstructure and properties of TRIP-aided ultra-high strength steels, ISIJ International, 53, 337–346, (2013).
  • [39] A Barbacki, "The role of bainite in shaping mechanical properties of steels." Journal of Materials Processing Technology, 53, 1-2, 57-63, (1995).
  • [40] C. Wang, H. Ding, M. Cai, B. Rolfe, Characterization of microstructures and tensile properties of TRIP-aided steels with different matrix microstructure, Materials Science and Engineering: A, 610, 65–75, (2014).
  • [41] M. De Meyer, L. Kestens, B.C. De Cooman, Texture development in cold rolled and annealed C-Mn-Si and C-Mn-Al-Si TRIP steels, Materials Science and Technology, 17, 1353–1359, (2001).
  • [42] S. Chatterjee, H.K.D.H. Bhadeshia, Stretch-flangeability of strong multiphase steels, Materials Science and Technology, 23, 606–609, (2007).
  • [43] Garcia, C. I., and A. J. Deardo. "Formation of austenite in 1.5 pct Mn steels." Metallurgical Transactions A, 12: 521-530, (1981).
  • [44] D.Z. Yang, E.L. Brown, D.K. Matlock, G. Krauss, The formation of austenite at low intercritical annealing temperatures in a normalized 0.08C-1.45Mn-0.21Si steel, Metallurgical Transactions A, 16, 1523–1526, (1985).
  • [45] S. Şeras, Investigation of The Mechanical Properties Of TRIP Steels Containing 0,14% - 0,23% C, Msci thesis, Karabük Univ., (2018).

Manufacturing of Low and High-carbon TRIP Steels by Modeling CCT Diagrams, Design of Microstructure Maps and Tensile Properties

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1382745

Abstract

Although TRIP steels are the first-generation steel for the automotive industry, their high strength, formability, and strength after forming are versatile and widely used automotive steel. This study attempts to evaluate the automotive TRIP steels' manufacturing chains, thermal process, microstructure, and tensile properties via experimental modeling (CCT diagrams-microstructure maps) on two steel groups with low cost. The TRIP Steels manufacturing chains are chemical design, investment casting, hot rolling, and TRIP thermal processes modeling and applications. Experimental techniques performed on samples, meaning characterizations, are image analysis, XRD, hardness, and tensile tests. The results showed that a small amount of martensite transformation occurs during air cooling after the bainitic retention because of the low alloy content. As a result, modeling and microstructure maps have been successfully combined and studied in detail to design and manufacture the TRIP sheet steel.

Project Number

KBÜBAP-17-YL-431, KBÜ-BAP-13/2-DS-054

References

  • [1] Ö. PAMUK, A. DURGUTLU, Patlama Kaynağı Yöntemi ile Birleştirilen Östenitik Paslanmaz Çelik (AISI 316L) – S235JR Kompozit Malzemelerde Patlayıcı Oranının Mikroyapı ve Yorulma Özelliklerine Etkisi, Politeknik Dergisi, 21, 527–534, (2018).
  • [2] A. Durgutlu, B. Gülenç, Patlama Kaynağıyla Paslanmaz Çelik – Bakır Levhaların Kaynaklanabilirliği Ve Patlayıcı Oranının Birleşme Arayüzeyine Etkisi, Politeknik Dergisi, 5, 243–248, (2002).
  • [3] M.S. Yıldırım, Y. Kaya, Investigation of The Joining Interface of Copper-Titanium Bimetallic Composite Materials Manufactured Using Explosive Welding Method, Journal of Polytechnic, (2022).
  • [4] B. Demir, An Investigation Of Producability Of Dual-Phase - PhD thesis, Gazi University, Ankara)., (2003).
  • [5] D.K. Matlock, J.G. Speer, Third Generation of AHSS: Microstructure Design Concepts, Microstructure and Texture in Steels, 185–205, (2009).
  • [6] J.-H. Schmitt, T. Iung, New developments of advanced high-strength steels for automotive applications, C R Phys, 19, 641–656, (2018).
  • [7] B. Demir, M. Erdoǧan, The hardenability of austenite with different alloy content and dispersion in dual-phase steels, J Mater Process Technol, 208, 75–84, (2008).
  • [8] B. Demir, M Erdoğan, Çift-Fazlı Çeliklerde Martensit Hacim Oranı Ve Morfolojisinin Çekme Özellikleri Üzerine Etkisi, Gazi Üniv. Fen Bil. Dergisi, vol: 11 no 4 s. 727, Ekim (1998).
  • [9] B. Demir, An investigation on the production of dual-phase steel from AISI4140 and its impact strength at different martensite volume fractions, Metallofizika i Noveishie Tekhnologii 29, (9), pp.1159 - 1166 (2007).
  • [10] B.C. De Cooman, Structure–properties relationship in TRIP steels containing carbide-free bainite, Curr Opin Solid State Mater Sci, 8, 285–303, (2004).
  • [11] A. Eres-Castellanos, C. Garcia-Mateo, F.G. Caballero, Future trends on displacive stress and strain induced transformations in steels, Metals, 11, 1–19, (2021).
  • [12] Y. Wang, Y. Xu, Y. Wang, J. Zhang, C. Guo, X. Wang, W. Zhao, H. Liu, Enhanced stretch flangeability and crack propagation behavior of an 1100 MPa grade TRIP-aided bainitic ferrite steel, Journal of Materials Research and Technology, 26, 5503–5517, (2023).
  • [13] D.K. Matlock, J.G. Speer, E. De Moor, P.J. Gibbs, Recent Developments In Advanced Hıgh Strength Sheet Steels For Automotive Applıcatıons: An Overview, JESTECH, 15, 1–12, (2012).
  • [14] J. Wang, S. Van der Zwaag, Stabilization mechanisms of retained austenite in transformation-induced plasticity steel, Metallurgical and Materials Transactions A, 2001, 32:6, 32, 1527–1539, (2001).
  • [15] G.N. Haidemenopoulos, A.N. Vasilakos, Modelling of austenite stability in low-alloy triple-phase steels, Steel Research, 67, 513–519, (1996).
  • [16] J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey, Effect of microstructure on retained austenite stability and work hardening of TRIP steels, Materials Science and Engineering: A, 528, 4516–4521, (2011).
  • [17] S.J. Kim, C.G. Lee, I. Choi, S. Lee, Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.15 wt pct C transformation-induced plasticity-aided cold-rolled steel sheets, Metall Mater Trans A Phys Metall Mater Sci, 32, 505–514, (2001).
  • [18] A. Ramazani, K. Mukherjee, U. Prahl, W. Bleck, Transformation-induced, geometrically necessary, dislocation-based flow curve modeling of dual-phase steels: Effect of grain size, Metall Mater Trans A Phys Metall Mater Sci, 43, 3850–3869, (2012).
  • [19] Keele Stuart and Kimchi Manachem, AHSS_Guidelines V5.0 20140514, WorldAutoSteel, (2014).
  • [20] Sugimoto, K. I., Nakashima, Y., Kobayashi, J., & Hojo, T. (2023). Effects of Partial Replacement of Si by Al on Impact Toughness of 0.2% C-Si-Mn-Cr-B TRIP-Aided Martensitic Steel. Metals, 13, (7), 1206, (2023).
  • [21] K.S. Choi, A. Soulami, W.N. Liu, X. Sun, M.A. Khaleel, Influence of various material design parameters on deformation behaviors of TRIP steels, Comput Mater Sci, 50, 720–730, (2010).
  • [22] X.D. Wang, B.X. Huang, Y.H. Rong, L. Wang, Microstructures and stability of retained austenite in TRIP steels, Materials Science and Engineering: A, 438–440, 300–305, (2006).
  • [23] O. Graè Ssel, L. Kruè Ger, G. Frommeyer, L.W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development of properties of application, International Journal of plasticity, 16.10-11: 1391-1409, (2000).
  • [24] M. Erdogan, R. Priestner, Effect of epitaxial ferrite on yielding and plastic flow in dual phase steel in tension and compression, Materials Science and Technology 15, 1273–1284. (1999).
  • [25] B. Demir, M. Erdogan, Tensile Properties Of The Hardenable Dual Phase Steel With Different Martensite Dispersion, JESTECH, 15, 13–19, (2012).
  • [26] B. Demir, M. Erdogan, Fracture Behaviour Of The Hardenable Dual Phase Steel With Different Martensite Dispersıons, JESTECH, 15, 97–103, (2012).
  • [27] M. Zhang, L. Li, R.Y. Fu, D. Krizan, B.C. De Cooman, Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels, Materials Science and Engineering: A, 438–440, 296–299, (2006).
  • [28] S. Chatterjee, Transformations in TRIP-assisted Steels: Microstructure and Properties, PhD Thesis (2006).
  • [29] Xie, Hao-jie, Xiao-chun Wu, and Yong-an Min. "Influence of chemical composition on phase transformation temperature and thermal expansion coefficient of hot work die steel." Journal of Iron and Steel Research International, 15, 6. 56-61, (2008).
  • [30] S.H. Atapek, E. Erişir, S. Gümüş, Modeling and thermal analysis of solidification in a low alloy steel, J Therm Anal Calorim, 114, 179–183, (2013).
  • [31] P.J. Jacques, E. Girault, P. Harlet, F. Delannay, The developments of cold-rolled TRIP-assisted multiphase steels. Low silicon TRIP-assisted multiphase steels, ISIJ International, 41, 1061–1067, (2001).
  • [32] A. Kozłowska, A. Grajcar, J. Opara, J. Kaczmarczyk, A. Janik, K. Radwański, Mechanical behaviour and micromechanical modelling of medium-Mn steel microstructure evolution, Int J Mech Sci 220 (2022).
  • [33] M. Erdogan, Effect of austenite dispersion on phase transformation in dual phase steel, Scr Mater, 48, 501–506, (2003).
  • [34] P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Van Humbeeck, F. Delannay, The developments of cold-rolled TRIP-assisted multiphase steels. Al-alloyed TRIP-assisted multiphase steels, ISIJ International, 41, 1068–1074, (2001).
  • [35] K.I. Sugimoto, D. Fiji, N. Yoshikawa, Fatigue strength of newly developed high-strength low alloy TRIP-aided steels with good hardenability, in: Procedia Eng, pp. 359–362, (2010).
  • [36] De Meyer, Marijke, Jan Mahieu, and B. C. De Cooman. "Empirical microstructure prediction method for combined intercritical annealing and bainitic transformation of TRIP steel.", Materials science and technology, 18, 10, 1121-1132, (2002).
  • [37] H. tao Jiang, W. Ding, D. Tang, W. Huang, Mechanical Property and Microstructural Characterization of C-Mn-Al-Si Hot Dip Galvanizing TRIP Steel, Journal of Iron and Steel Research International, 19, 29–36, (2012).
  • [38] P.P. Suikkanen, A.-J. Ristola, A.M. Hirvi, P. Sahu, Mahesh, C. Somani, D. Arthur, L.P. Karjalainen, Effects of carbon content and cooling path on the microstructure and properties of TRIP-aided ultra-high strength steels, ISIJ International, 53, 337–346, (2013).
  • [39] A Barbacki, "The role of bainite in shaping mechanical properties of steels." Journal of Materials Processing Technology, 53, 1-2, 57-63, (1995).
  • [40] C. Wang, H. Ding, M. Cai, B. Rolfe, Characterization of microstructures and tensile properties of TRIP-aided steels with different matrix microstructure, Materials Science and Engineering: A, 610, 65–75, (2014).
  • [41] M. De Meyer, L. Kestens, B.C. De Cooman, Texture development in cold rolled and annealed C-Mn-Si and C-Mn-Al-Si TRIP steels, Materials Science and Technology, 17, 1353–1359, (2001).
  • [42] S. Chatterjee, H.K.D.H. Bhadeshia, Stretch-flangeability of strong multiphase steels, Materials Science and Technology, 23, 606–609, (2007).
  • [43] Garcia, C. I., and A. J. Deardo. "Formation of austenite in 1.5 pct Mn steels." Metallurgical Transactions A, 12: 521-530, (1981).
  • [44] D.Z. Yang, E.L. Brown, D.K. Matlock, G. Krauss, The formation of austenite at low intercritical annealing temperatures in a normalized 0.08C-1.45Mn-0.21Si steel, Metallurgical Transactions A, 16, 1523–1526, (1985).
  • [45] S. Şeras, Investigation of The Mechanical Properties Of TRIP Steels Containing 0,14% - 0,23% C, Msci thesis, Karabük Univ., (2018).
There are 45 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Manufacturing Metallurgy
Journal Section Research Article
Authors

Samet Seras 0000-0003-4649-7158

Bilge Demir 0000-0002-3617-9749

Project Number KBÜBAP-17-YL-431, KBÜ-BAP-13/2-DS-054
Early Pub Date December 27, 2024
Publication Date
Submission Date October 29, 2023
Acceptance Date December 14, 2023
Published in Issue Year 2025 EARLY VIEW

Cite

APA Seras, S., & Demir, B. (2024). Manufacturing of Low and High-carbon TRIP Steels by Modeling CCT Diagrams, Design of Microstructure Maps and Tensile Properties. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1382745
AMA Seras S, Demir B. Manufacturing of Low and High-carbon TRIP Steels by Modeling CCT Diagrams, Design of Microstructure Maps and Tensile Properties. Politeknik Dergisi. Published online December 1, 2024:1-1. doi:10.2339/politeknik.1382745
Chicago Seras, Samet, and Bilge Demir. “Manufacturing of Low and High-Carbon TRIP Steels by Modeling CCT Diagrams, Design of Microstructure Maps and Tensile Properties”. Politeknik Dergisi, December (December 2024), 1-1. https://doi.org/10.2339/politeknik.1382745.
EndNote Seras S, Demir B (December 1, 2024) Manufacturing of Low and High-carbon TRIP Steels by Modeling CCT Diagrams, Design of Microstructure Maps and Tensile Properties. Politeknik Dergisi 1–1.
IEEE S. Seras and B. Demir, “Manufacturing of Low and High-carbon TRIP Steels by Modeling CCT Diagrams, Design of Microstructure Maps and Tensile Properties”, Politeknik Dergisi, pp. 1–1, December 2024, doi: 10.2339/politeknik.1382745.
ISNAD Seras, Samet - Demir, Bilge. “Manufacturing of Low and High-Carbon TRIP Steels by Modeling CCT Diagrams, Design of Microstructure Maps and Tensile Properties”. Politeknik Dergisi. December 2024. 1-1. https://doi.org/10.2339/politeknik.1382745.
JAMA Seras S, Demir B. Manufacturing of Low and High-carbon TRIP Steels by Modeling CCT Diagrams, Design of Microstructure Maps and Tensile Properties. Politeknik Dergisi. 2024;:1–1.
MLA Seras, Samet and Bilge Demir. “Manufacturing of Low and High-Carbon TRIP Steels by Modeling CCT Diagrams, Design of Microstructure Maps and Tensile Properties”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1382745.
Vancouver Seras S, Demir B. Manufacturing of Low and High-carbon TRIP Steels by Modeling CCT Diagrams, Design of Microstructure Maps and Tensile Properties. Politeknik Dergisi. 2024:1-.