Research Article
BibTex RIS Cite

Modeling and Simulation of DC Glow Discharges in the AlGaSb coupled Ar/H2 Hybrid Micro Plasma System

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1406036

Abstract

Several studies have been reported on the theoretical and experimental investigation of gas discharge - semiconductor micro plasma systems (GDSµPS).
In this study, a two-dimensional fluid model of a micro plasma in a square direct-current (DC) glow-discharge chamber is simulated using the finite-element method (FEM) solver COMSOL Multiphysics based on the mixture-averaged diffusion-drift theory of gas discharges and Maxwellian electron energy distribution function.
A unique III-antimonide high-Ohmic semi-insulating aluminum gallium antimonide (AlGaSb) with finely digitated electron emission surface is modeled as planar cathode electrode coupled to ITO/SiO2 planar anode electrode across a gas discharge gap of 100 µm distance. Argon (Ar) and argon mixed with a mole fraction of 5% hydrogen (Ar/H2) gas medium are seperately introduced into the micro gap at sub-atmospheric pressure of 150 Torr, and the cell is driven at 1.0 kV DC by a stationary power source to simulate the transitions from electron field emission state toward self-sustained normal glow discharge state.
The model is simulated to exhibit the transient physical characteristics of the AlGaSb-Ar/H2 glow-discharge micro plasma system by solving the spatio-temporal dynamics of various discharge parameters, including electron density, electron energy density, electron current density and electric potential. It has been observed that a fraction of hydrogen addition to argon can be used as an effective tool in modeling application-specific hybrid micro plasma – semiconductor based infrared photodetector devices.

Ethical Statement

The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission

Supporting Institution

Gazi unv.

Project Number

BAP Project Number: FDK-

Thanks

This study has been supported by Gazi University Scientific Research Projects Coordination Unit (BAP Project Number: FDK-2023-8704). The authors would like to thank Gazi University for this support.

References

  • [1] Baranov O.O., Xu S., Xu L., Huang S., Lim J.W.M., Cvelbar U., Levchenko I., and Bazaka K., “Miniaturized plasma sources: Can technological solutions help electric micropropulsion?”, IEEE Trans. Plasma Sci., 46: 230–238, (2017).
  • [2] Shivkumar G., Qiao L., and Alexeenko A.A., “Plasma-flow interactions in field-emission discharges with applications in microcombustion,” J. Phys. D Appl. Phys., 52: 384001, (2019).
  • [3] Takahashi T., Mori D., Kawanabe T., Takao Y., Eriguchi K., and Ono K., “Microplasma thruster powered by X-band microwaves”, J. Appl. Phys., 125: 083301, (2019).
  • [4] Chiang W.-H., Mariotti D., Sankaran R.M., Eden J.G., and Ostrikov K., “Microplasmas for advanced materials and devices”, Adv. Mater., 32: 1905508, (2020).
  • [5] Kurt H.H., Koc E., Salamov B.G., “Atmospheric Pressure DC Glow Discharge in Semiconductor Gas Discharge Electronic Devices”, IEEE Transactions on Plasma Science, 38(2): 137-141, (2010).
  • [6] Kurt H.H., Tanrıverdi E., “The Features of GaAs and GaP Semiconductor Cathodes in an Infrared Converter System”, Journal of Electronic Materials, 46: 4024-4033, (2017).
  • [7] T von Woedtke, Laroussi M. and Gherardi M., “Foundations of plasmas for medical applications”, Plasma Sources Science and Technology, 31: 054002, (2002).
  • [8] Laroussi M., “Low-temperature plasma jet for biomedical applications: A review”, IEEE Trans. Plasma Sci., 43: 703–712, (2015).
  • [9] Bülbül M.M., Kurt H.H., Salamov B., “Surface behaviour of plasma etched photodetector in a planar gas discharge image converter”, 7th Int’l Conference on Nanometer-Scale Science and Technology, (2002).
  • [10] Sadiq Y., Kurt H.Y., Albarzanji A.O., Alekperov S.D, Salamov B.G., “Transport properties in semiconductor-gas discharge electronic devices”, Solid-state electronics, 53(9): 1009-1015, (2009).
  • [11] Garner A.L., Loveless A.M., Dahal J.N., and Venkattraman A., “A tutorial on theoretical and computational techniques for gas breakdown in microscale gaps”, IEEE Trans. Plasma Sci., 48: 808–824, (2020).
  • [12] Kurt H.Y., Sadıq Y., Salamov B.G., “Nonlinear electrical characteristics of semi-insulating GaAs”, Physica status solidi (a), 205(2): 321-329, (2008).
  • [13] Kurt H.H., Tanrıverdi E., “Electrical properties of ZnS and ZnSe semiconductors in a plasma-semiconductor system”, Journal of Electronic Materials, 46: 3965–3975, (2017).
  • [14] Kurt H.H., Salamov B.G., “Breakdown Phenomenon and Electrical Process in a Microplasma System with InP Electrode”, 7th European Conference on Renewable Energy Systems, JOM, 72: 651–657, (2020).
  • [15] Chiang W.-H., Mariotti D., Sankaran R. M., Eden J. G., and Ostrikov K., “Microplasmas for advanced materials and devices”, Adv. Mater., 32: 1905508, (2020).
  • [16] Zhang J. et al., “Engineering Surface Plasmons in Metal/Nonmetal Structures for Highly Desirable Plasmonic Photodetectors”, ACS Materials Lett., 4: 343−355, (2022).
  • [17] Fu Y., Zhang P., Krek J., and Verboncoeur J.P., “Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions”, Appl. Phys. Lett., 114: 014102, (2019).
  • [18] Fu Y., Zhang P., Verboncoeur J.P., and Wang X., Plasma Res. Express 2: 013001, (2020).
  • [19] Go D.B. and Venkattraman A., “Microscale gas breakdown: Ion-enhanced field emission and the modified Paschen’s curve”, J. Phys. D Appl. Phys., 47: 503001, (2014).
  • [20] Malayter J.R. and Garner A.L., “Theoretical assessment of surface waviness on work function”, AIP Adv., 10: 095110, (2020).
  • [21] Brayfield II R. S., Fairbanks A.J., Loveless A.M., Gao S., Dhanabal A., Li W., Darr C., Wu W., and Garner A. L., “The impact of cathode surface roughness and multiple breakdown events on microscale gas breakdown at atmospheric pressure”, J. Appl. Phys., 125: 203302, (2019).
  • [22] Garner A.L., Meng G., Fu Y. et al., “Transitions between electron emission and gas breakdown mechanisms across length and pressure scales”, J. Appl. Phys., 128: 210903, (2020).
  • [23] Tournié E. et al., “Mid-infrared III–V semiconductor lasers epitaxially grown on Si substrates”, Science & Applications, 11: 165, (2022).
  • [24] Vurgaftman I., Meyer J.R., Ram-Mohan L.R., “Band parameters for III–V compound semiconductors and their alloys”, J. Appl. Phys., 89: 5815–5875, (2001).
  • [25] Dutta P.S., Bhat H.L., Kumar V., “The physics and technology of gallium antimonide: an emerging optoelectronic material”, J. Appl. Phys., 81: 5821–5870, (1997).
  • [26] Naresh C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles”, J. Appl. Phys., 110: 046101, (2011).
  • [27] Ongun E., Yücel (Kurt) H.H., Utaş S., “DC-driven subatmospheric glow discharges in the infrared-stimulated”, J. Mater Sci: Mater Electron, 35: 655, 1-14, (2024).
  • [28] Vossen J.L., "Thin Film Processes", Academic Press, INC., New York, (1978).
  • [29] Tabib-Azar M., Pai P., “Microplasma Field Effect Transistors”, Micromachines, 8: 117, (2017).
  • [30] Liangliang L., and Wang Q., “Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis”, Plasma Chem Plasma Process, 35: 925–962, (2015).
  • [31] Kurt H.Y., Salamov B.G., and Mammadov T.S., “Electrical instability in a semiconductor gas discharge system”, Crystal Research and Technology, 40(12): 1160-1164, (2005).
  • [32] Kurt H.Y. Inalöz A., and Salamov B.G., “Study of non-thermal plasma discharge in semiconductor gas discharge electronic devices”, Optoelectronics and Advanced Materials-Rapid Communications, 4: 205-210, (2010).
  • [33] Zimmermann S., Haase M., Lang N., Röpcke J., Schulz S.E., Otto T., “The role of plasma analytics in leading-edge semiconductor technologies”, Contributions to Plasma Physics, 58(5): 367-376, (2018).
  • [34] Choi E.H., Kaushik N.K., Hong Y.J., Lim J.S., Choi J.S., and Han I., “Plasma bioscience for medicine, agriculture and hygiene applications”, Journal of the Korean Physical Society, 80: 817–851, (2022).
  • [35] Kurt H.Y., Kalkan G., Özer M., Tanrıverdi E., Yigit D., “The Effect of the Oxidation on GaAs Semiconductor Surface to the System Characteristics in a Double-Gapped Plasma Cell”, Journal of Polytechnic, 17(4): 161-165, (2014).
  • [36] Kurt H.Y., Sadiq Y., Salamov B.G., “Nonlinear electrical characteristics of semi‐insulating GaAs”, Physica status solidi (a), 205(2): 321-329, (2008).
  • [37] Schoenbach K.H. and Becker K., “20 years of microplasma research: A status report”, Eur. Phys. J. D, 70: 29, (2016).
  • [38] Ünal İ., Karatay S., Yesil A., Hançerlioğulları A., “Seasonal variations of impedance in the ionospheric plasma”, Journal of Polytechnic, 23(2): 427-433, (2020).
  • [39] Bennett, B.R., Khan, S. A., Boos, J.B., Papanicolaou, N. A., Kuznetsov, V. V., “AlGaSb Buffer Layers for Sb-Based Transistors”, Journal of Electronic Materials, 39(10): 2196–2202, (2010).
  • [40] Bennett, B.R., Boos, J.B., Ancona, M.G., Papanicolaou, N. A., Cooke, G. A., Kheyrandish, H., “InAlSb/InAs/AlGaSb Quantum Well Heterostructures for High-Electron-Mobility Transistors”, Journal of Electronic Materials, 36(2): 99–104, (2007).
  • [41] Kurt, H.H., “Exploration of the infrared sensitivity for a ZnSe electrode of an IR image converter”, Journal of Electronic Materials, 47(8): 4486-4492, (2018).
  • [42] Yücel H.H., Utaş S., Ongun E., “The study of DC- and AC-driven GaAs-coupled gas discharge micro plasma systems: Modeling and simulation”, Journal of Electronic Materials, 53: 3792-3808, (2024).
  • [43] Yücel H.H., Utaş S., Ongun E., “The investigation of direct current microdischarges in HgCdTe-coupled Ar/H2 gas medium at atmospheric and hyper-atmospheric pressures”, Optoelectronics and Advanced Materials – Rapid Communications, 18(5-6): 296-304, (2024).
  • [44] Ongun E., Yücel H.H., “Spatiotemporal modeling and simulation of DC microplasma glow discharges in ZnSe-Ar/H2 system”, Inspiring Technologies and Innovations, 3(1): 1-8, (2024).

Hibrit AlGaSb-Ar/H2 Mikro Plazma Sisteminde DC Glow Deşarjlarının Modellenmesi ve Simülasyonu

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1406036

Abstract

Bu çalışmada, mikro boşluklu düzlemsel anot/katot elektrot plakalı atmosfer altı basınçta DC -beslemeli gaz deşarj-yarıiletken mikro plazma sistemlerin (GDSµPS) temel karakteristik özellikleri COMSOL Multifizik simülasyon platformunda incelendi. Modelde alüminyum galyum antimonid (AlGaSb) katot elektrot, ITO/SiO2 anot elektrot, 100 µm gaz deşarj aralığına sahip mikro plazma hücresi modellendi. Plazma reaktör ortamında 150 Torr basınç seviyesinde argon (Ar) ve molar 5% kısmi hidrojen karışımlı argon (Ar/H2) tanımlandı. Micro plazma hücresi 1,0 kV DC sabit gerilim altında beslendi. Model, elektron yoğunluğu, elektron enerji yoğunluğu, elektron akım yoğunluğu ve elektrik potansiyeli dahil olmak üzere çeşitli deşarj parametrelerinin uzaysal-zamansal dinamiklerini çözerek AlGaSb-Ar/H2 glow deşarj mikro plazma sisteminin geçiş fiziksel özelliklerini anlamak için simüle edildi. Uygulamaya özel hibrit mikro plazma – yarı iletken tabanlı kızılötesi fotodetektör cihazlarının modellenmesinde argona bir miktar hidrojen ilavesinin etkili bir araç olarak kullanılabileceği gözlemlenmiştir.

Project Number

BAP Project Number: FDK-

References

  • [1] Baranov O.O., Xu S., Xu L., Huang S., Lim J.W.M., Cvelbar U., Levchenko I., and Bazaka K., “Miniaturized plasma sources: Can technological solutions help electric micropropulsion?”, IEEE Trans. Plasma Sci., 46: 230–238, (2017).
  • [2] Shivkumar G., Qiao L., and Alexeenko A.A., “Plasma-flow interactions in field-emission discharges with applications in microcombustion,” J. Phys. D Appl. Phys., 52: 384001, (2019).
  • [3] Takahashi T., Mori D., Kawanabe T., Takao Y., Eriguchi K., and Ono K., “Microplasma thruster powered by X-band microwaves”, J. Appl. Phys., 125: 083301, (2019).
  • [4] Chiang W.-H., Mariotti D., Sankaran R.M., Eden J.G., and Ostrikov K., “Microplasmas for advanced materials and devices”, Adv. Mater., 32: 1905508, (2020).
  • [5] Kurt H.H., Koc E., Salamov B.G., “Atmospheric Pressure DC Glow Discharge in Semiconductor Gas Discharge Electronic Devices”, IEEE Transactions on Plasma Science, 38(2): 137-141, (2010).
  • [6] Kurt H.H., Tanrıverdi E., “The Features of GaAs and GaP Semiconductor Cathodes in an Infrared Converter System”, Journal of Electronic Materials, 46: 4024-4033, (2017).
  • [7] T von Woedtke, Laroussi M. and Gherardi M., “Foundations of plasmas for medical applications”, Plasma Sources Science and Technology, 31: 054002, (2002).
  • [8] Laroussi M., “Low-temperature plasma jet for biomedical applications: A review”, IEEE Trans. Plasma Sci., 43: 703–712, (2015).
  • [9] Bülbül M.M., Kurt H.H., Salamov B., “Surface behaviour of plasma etched photodetector in a planar gas discharge image converter”, 7th Int’l Conference on Nanometer-Scale Science and Technology, (2002).
  • [10] Sadiq Y., Kurt H.Y., Albarzanji A.O., Alekperov S.D, Salamov B.G., “Transport properties in semiconductor-gas discharge electronic devices”, Solid-state electronics, 53(9): 1009-1015, (2009).
  • [11] Garner A.L., Loveless A.M., Dahal J.N., and Venkattraman A., “A tutorial on theoretical and computational techniques for gas breakdown in microscale gaps”, IEEE Trans. Plasma Sci., 48: 808–824, (2020).
  • [12] Kurt H.Y., Sadıq Y., Salamov B.G., “Nonlinear electrical characteristics of semi-insulating GaAs”, Physica status solidi (a), 205(2): 321-329, (2008).
  • [13] Kurt H.H., Tanrıverdi E., “Electrical properties of ZnS and ZnSe semiconductors in a plasma-semiconductor system”, Journal of Electronic Materials, 46: 3965–3975, (2017).
  • [14] Kurt H.H., Salamov B.G., “Breakdown Phenomenon and Electrical Process in a Microplasma System with InP Electrode”, 7th European Conference on Renewable Energy Systems, JOM, 72: 651–657, (2020).
  • [15] Chiang W.-H., Mariotti D., Sankaran R. M., Eden J. G., and Ostrikov K., “Microplasmas for advanced materials and devices”, Adv. Mater., 32: 1905508, (2020).
  • [16] Zhang J. et al., “Engineering Surface Plasmons in Metal/Nonmetal Structures for Highly Desirable Plasmonic Photodetectors”, ACS Materials Lett., 4: 343−355, (2022).
  • [17] Fu Y., Zhang P., Krek J., and Verboncoeur J.P., “Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions”, Appl. Phys. Lett., 114: 014102, (2019).
  • [18] Fu Y., Zhang P., Verboncoeur J.P., and Wang X., Plasma Res. Express 2: 013001, (2020).
  • [19] Go D.B. and Venkattraman A., “Microscale gas breakdown: Ion-enhanced field emission and the modified Paschen’s curve”, J. Phys. D Appl. Phys., 47: 503001, (2014).
  • [20] Malayter J.R. and Garner A.L., “Theoretical assessment of surface waviness on work function”, AIP Adv., 10: 095110, (2020).
  • [21] Brayfield II R. S., Fairbanks A.J., Loveless A.M., Gao S., Dhanabal A., Li W., Darr C., Wu W., and Garner A. L., “The impact of cathode surface roughness and multiple breakdown events on microscale gas breakdown at atmospheric pressure”, J. Appl. Phys., 125: 203302, (2019).
  • [22] Garner A.L., Meng G., Fu Y. et al., “Transitions between electron emission and gas breakdown mechanisms across length and pressure scales”, J. Appl. Phys., 128: 210903, (2020).
  • [23] Tournié E. et al., “Mid-infrared III–V semiconductor lasers epitaxially grown on Si substrates”, Science & Applications, 11: 165, (2022).
  • [24] Vurgaftman I., Meyer J.R., Ram-Mohan L.R., “Band parameters for III–V compound semiconductors and their alloys”, J. Appl. Phys., 89: 5815–5875, (2001).
  • [25] Dutta P.S., Bhat H.L., Kumar V., “The physics and technology of gallium antimonide: an emerging optoelectronic material”, J. Appl. Phys., 81: 5821–5870, (1997).
  • [26] Naresh C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles”, J. Appl. Phys., 110: 046101, (2011).
  • [27] Ongun E., Yücel (Kurt) H.H., Utaş S., “DC-driven subatmospheric glow discharges in the infrared-stimulated”, J. Mater Sci: Mater Electron, 35: 655, 1-14, (2024).
  • [28] Vossen J.L., "Thin Film Processes", Academic Press, INC., New York, (1978).
  • [29] Tabib-Azar M., Pai P., “Microplasma Field Effect Transistors”, Micromachines, 8: 117, (2017).
  • [30] Liangliang L., and Wang Q., “Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis”, Plasma Chem Plasma Process, 35: 925–962, (2015).
  • [31] Kurt H.Y., Salamov B.G., and Mammadov T.S., “Electrical instability in a semiconductor gas discharge system”, Crystal Research and Technology, 40(12): 1160-1164, (2005).
  • [32] Kurt H.Y. Inalöz A., and Salamov B.G., “Study of non-thermal plasma discharge in semiconductor gas discharge electronic devices”, Optoelectronics and Advanced Materials-Rapid Communications, 4: 205-210, (2010).
  • [33] Zimmermann S., Haase M., Lang N., Röpcke J., Schulz S.E., Otto T., “The role of plasma analytics in leading-edge semiconductor technologies”, Contributions to Plasma Physics, 58(5): 367-376, (2018).
  • [34] Choi E.H., Kaushik N.K., Hong Y.J., Lim J.S., Choi J.S., and Han I., “Plasma bioscience for medicine, agriculture and hygiene applications”, Journal of the Korean Physical Society, 80: 817–851, (2022).
  • [35] Kurt H.Y., Kalkan G., Özer M., Tanrıverdi E., Yigit D., “The Effect of the Oxidation on GaAs Semiconductor Surface to the System Characteristics in a Double-Gapped Plasma Cell”, Journal of Polytechnic, 17(4): 161-165, (2014).
  • [36] Kurt H.Y., Sadiq Y., Salamov B.G., “Nonlinear electrical characteristics of semi‐insulating GaAs”, Physica status solidi (a), 205(2): 321-329, (2008).
  • [37] Schoenbach K.H. and Becker K., “20 years of microplasma research: A status report”, Eur. Phys. J. D, 70: 29, (2016).
  • [38] Ünal İ., Karatay S., Yesil A., Hançerlioğulları A., “Seasonal variations of impedance in the ionospheric plasma”, Journal of Polytechnic, 23(2): 427-433, (2020).
  • [39] Bennett, B.R., Khan, S. A., Boos, J.B., Papanicolaou, N. A., Kuznetsov, V. V., “AlGaSb Buffer Layers for Sb-Based Transistors”, Journal of Electronic Materials, 39(10): 2196–2202, (2010).
  • [40] Bennett, B.R., Boos, J.B., Ancona, M.G., Papanicolaou, N. A., Cooke, G. A., Kheyrandish, H., “InAlSb/InAs/AlGaSb Quantum Well Heterostructures for High-Electron-Mobility Transistors”, Journal of Electronic Materials, 36(2): 99–104, (2007).
  • [41] Kurt, H.H., “Exploration of the infrared sensitivity for a ZnSe electrode of an IR image converter”, Journal of Electronic Materials, 47(8): 4486-4492, (2018).
  • [42] Yücel H.H., Utaş S., Ongun E., “The study of DC- and AC-driven GaAs-coupled gas discharge micro plasma systems: Modeling and simulation”, Journal of Electronic Materials, 53: 3792-3808, (2024).
  • [43] Yücel H.H., Utaş S., Ongun E., “The investigation of direct current microdischarges in HgCdTe-coupled Ar/H2 gas medium at atmospheric and hyper-atmospheric pressures”, Optoelectronics and Advanced Materials – Rapid Communications, 18(5-6): 296-304, (2024).
  • [44] Ongun E., Yücel H.H., “Spatiotemporal modeling and simulation of DC microplasma glow discharges in ZnSe-Ar/H2 system”, Inspiring Technologies and Innovations, 3(1): 1-8, (2024).
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Material Physics, Composite and Hybrid Materials, Micro and Nanosystems, Air-Space Transportation
Journal Section Research Article
Authors

Erhan Ongun 0009-0007-4966-1044

Selçuk Utaş 0000-0002-9709-516X

Hilal Kurt 0000-0002-1277-5204

Aybaba Hançerlioğulları 0000-0002-9830-4226

Project Number BAP Project Number: FDK-
Early Pub Date July 16, 2024
Publication Date
Submission Date December 17, 2023
Acceptance Date February 12, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Ongun, E., Utaş, S., Kurt, H., Hançerlioğulları, A. (2024). Hibrit AlGaSb-Ar/H2 Mikro Plazma Sisteminde DC Glow Deşarjlarının Modellenmesi ve Simülasyonu. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1406036
AMA Ongun E, Utaş S, Kurt H, Hançerlioğulları A. Hibrit AlGaSb-Ar/H2 Mikro Plazma Sisteminde DC Glow Deşarjlarının Modellenmesi ve Simülasyonu. Politeknik Dergisi. Published online July 1, 2024:1-1. doi:10.2339/politeknik.1406036
Chicago Ongun, Erhan, Selçuk Utaş, Hilal Kurt, and Aybaba Hançerlioğulları. “Hibrit AlGaSb-Ar/H2 Mikro Plazma Sisteminde DC Glow Deşarjlarının Modellenmesi Ve Simülasyonu”. Politeknik Dergisi, July (July 2024), 1-1. https://doi.org/10.2339/politeknik.1406036.
EndNote Ongun E, Utaş S, Kurt H, Hançerlioğulları A (July 1, 2024) Hibrit AlGaSb-Ar/H2 Mikro Plazma Sisteminde DC Glow Deşarjlarının Modellenmesi ve Simülasyonu. Politeknik Dergisi 1–1.
IEEE E. Ongun, S. Utaş, H. Kurt, and A. Hançerlioğulları, “Hibrit AlGaSb-Ar/H2 Mikro Plazma Sisteminde DC Glow Deşarjlarının Modellenmesi ve Simülasyonu”, Politeknik Dergisi, pp. 1–1, July 2024, doi: 10.2339/politeknik.1406036.
ISNAD Ongun, Erhan et al. “Hibrit AlGaSb-Ar/H2 Mikro Plazma Sisteminde DC Glow Deşarjlarının Modellenmesi Ve Simülasyonu”. Politeknik Dergisi. July 2024. 1-1. https://doi.org/10.2339/politeknik.1406036.
JAMA Ongun E, Utaş S, Kurt H, Hançerlioğulları A. Hibrit AlGaSb-Ar/H2 Mikro Plazma Sisteminde DC Glow Deşarjlarının Modellenmesi ve Simülasyonu. Politeknik Dergisi. 2024;:1–1.
MLA Ongun, Erhan et al. “Hibrit AlGaSb-Ar/H2 Mikro Plazma Sisteminde DC Glow Deşarjlarının Modellenmesi Ve Simülasyonu”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1406036.
Vancouver Ongun E, Utaş S, Kurt H, Hançerlioğulları A. Hibrit AlGaSb-Ar/H2 Mikro Plazma Sisteminde DC Glow Deşarjlarının Modellenmesi ve Simülasyonu. Politeknik Dergisi. 2024:1-.