Research Article
BibTex RIS Cite

Effects of Annealing Temperature on Optical, Surface and Structural Properties of TiN, TiO, TiOxNy Thin Films

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1429518

Abstract

Titanium nitride (TiN), titanium oxide (TiO) and titanium oxynitride (TiOxNy) thin films were grown on soda lime glass (SLG), pure silicon (i-Si) and 316L stainless steel (316LSS) substrates using the sputtering technique with confocal geometry. In order to improve the physical properties of the films obtained, they were subjected to heat treatment at different temperatures in a diffusion furnace and the effect of annealing temperature on the optical, surface and structural properties of the films was investigated. Optical properties of TiN, TiO, TiOxNy thin films were determined by Attenuated Total Reflection (ATR), Fourier transform infrared spectroscopy (FTIR), structural properties were determined by X-ray diffraction diffractometer (XRD), and surface properties were determined by atomic force microscopy (AFM). According to the results obtained from the analyses, annealing temperature improved the physical properties of TiN, TiO, TiOxNy thin films.

References

  • [1] Yavuz, H. İ., & Yamanoğlu, R. “β tipi Ti alaşımlarının özellikleri üzerine bir derleme: mikroyapı, mekanik, korozyon özellikleri ve üretim yöntemleri”, Politeknik Dergisi, 26(4), 1601-1620, (2023).
  • [2] Sarıkayak, A., Koc, E., Kalkan, M., & Toker, S. M. “Yüzeyinde mikrodeformasyon alanları oluşturulan 316L paslanmaz çeliğin biyomimetik olarak kaplanması”, Politeknik Dergisi, 26(4), 1349-1358, (2023).
  • [3] Momma, C., Knop, U., & Nolte, S. “Laser cutting of slotted tube coronary stents-state-of-the-art and future developments”, Progress in Biomedical Research, 4(1), 39-44, (1999).
  • [4] Subaşı, M., & Karataş, Ç. “Titanyum ve titanyum alaşımlarından yapılan implantlar üzerine inceleme”, Politeknik Dergisi, 15(2), 87-103, (2012).
  • [5] Yıldırım, M. S., & Kaya, Y. “Patlamalı Kaynak Yöntemi Kullanılarak Üretilen Bakır- Titanyum Bimetalik Kompozit Malzemelerin Birleştirme Arayüzeyinin İncelenmesi”, Politeknik Dergisi, 27(1), 47-58, (2024).
  • [6] Ada, H., El Rubaye, A. Q. J., Aşıkuzun, E., Mavi, A., Kaplan, Y., & Aksöz, S. “Investigation of Wear, Surface, Metallurgical and Mechanical Properties of Ti6Al4V Alloys Coated with PVD Method”, Politeknik Dergisi, 1-1, Erken Görünüm (2024).
  • [7] Aydın, M. “Titanyum alaşımının yüksek-hızlı işleme süreci: Kapsamlı sonlu eleman modelleme”, Politeknik Dergisi, 25(2), 813-826, (2022).
  • [8] Hermawan, H., & Mantovani, D. “Process of prototyping coronary stents from biodegradable Fe–Mn alloys”, Acta biomaterialia, 9(10), 8585-8592, (2013).
  • [9] Kobo, O., Saada, M., Meisel, S. R., Hellou, E., Frimerman, A., Fanne, R. A., Mohsen, J., Danon, A., & Roguin, A. “Modern stents: where are we going?”, Rambam Maimonides Medical Journal, 11(2), (2020).
  • [10] Beshchasna, N., Saqib, M., Kraskiewicz, H., Wasyluk, Ł., Kuzmin, O., Duta, O. C., Ficai, D., Ghizdavet, Z., Marin, A., Ficai, A., Sun, Z., Pichugin, V. F., Opitz, J., & Andronescu, E. “Recent advances in manufacturing innovative stents”, Pharmaceutics, 12(4), 349, (2020).
  • [11] Windecker, S., Mayer, I., De Pasquale, G., Maier, W., Dirsch, O., De Groot, P., Wu, Ya- Ping., Noll, G., Leskosek, B., Meier, B., Hess, O.M. & Working Group on Novel Surface Coating of Biomedical Devices (SCOL). “Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia”, Circulation, 104(8), 928-933, (2001).
  • [12] Scarano, A., Piattelli, M., Vrespa, G., Caputi, S., & Piattelli, A. “Bacterial adhesion on titanium nitride-coated and uncoated implants: an in vivo human study”, Journal of Oral Implantology, 29(2), 80-85, (2003).
  • [13] Karjalainen PP, Ylitalo A, Airaksinen KEJ, Nammas W. “Ti-tanium-nitride-oxide-coated Titan-2 bioactive coronary stent: a new horizon for coronary intervention”, Expert Review of Medical Devices, 7(5): 599-604, (2010).
  • [14] Jung, M. J., Nam, K. H., Chung, Y. M., Boo, J. H., and Han, J. G., “The physiochemical properties of TiOxNy films with controlled oxygen partial pressure”, Surface & Coatings Technology, 171: 71-74, (2003).
  • [15] Kola, P. V., Daniels, S. Cameron, D. C., and Hashmi, M. S. J., “Magnetron sputtering of tin protective coatings for medical applications”, Journal of Materials Processing Technology, 56: 422-430 (1996).
  • [16] Hove, R. P. V., Sierevelt, I. N., Royen, B. J. V., and Nolte, P. A., Hindawi Publishing Corporation BioMed Research International, 1-9 (2015).
  • [17] Banakh, O. Mousa, M., Matthey, J., Pontearso, A., Lorente, M. C., Sanjines, R., Fontana, P., Wiskott, A., and Durual, S., “Sputtered titanium oxynitride coatings for endosseous applications: physical and chemical evaluation and first bioactivity assays”, Applied Surface Science, 317: 986-993 (2014).
  • [18] Gotman, I., Gutmanas, E.Y., “Titanium nitride-based coatings on implantable medical devices”, Advanced Biomaterials and Devices in Medicine, 1: 53-73 (2014).
  • [19] Subramanian, B., Muraleedharan, C. V. Ananthakumar, R., & Jayachandran, M., “A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants”, Surface and Coatings Technology, 205(21-22): 5014-5020 (2011).
  • [20] Pham, V. H., Jun, S. H., Kim, H. E. & Koh, Y. H. “Deposition of titanium nitride (TiN) on Co–Cr and their potential application as vascular stent”, Applied Surface Science, 258(7): 2864-2868 (2012).
  • [21] Leng, Y. X., Wang, J., Yang, P., Chen, J. Y., & Huang, N., “The adhesion and clinical application of titanium oxide film on a 316 L vascular stent”, Surface and Coatings Technology, 363: 430-435 (2019).
  • [22] Hou, S., Yu, W., Yang, Z., Li, Y., Yang, L., & Lang, S., “Properties of titanium oxide coating on MgZn alloy by magnetron sputtering for stent application”, Coatings, 10(10): 999 (2020).
  • [23] Huan, Z., Fratila-Apachitei, L. E., Apachitei, I., & Duszczyk, J., “Characterization of porous TiO2 surfaces formed on 316L stainless steel by plasma electrolytic oxidation for stent applications”, Journal of functional biomaterials, 3(2): 349-360 (2012).
  • [24] Beshchasna, N. Ho, A. Y. K., Saqib, M., Kraśkiewicz, H., Wasyluk, Ł., Kuzmin, O., Duta,O.C., Ficai, D., Trusca, R. D., Ficai, A., Pichugin, V. F., Opitz, J., & Andronescu, E.,”Surface evaluation of titanium oxynitride coatings used for developing layered cardiovascular stents”, Materials Science and Engineering: C, 99: 405-416 (2019).
  • [25] Sun, Z., Khlusov, I. A., Evdokimov, K. E., Konishchev, M. E., Kuzmin, O. S., Khaziakhmatova,O.G., Malashchenko, V. V., Litvinova, L. S., Rutkowski, S., Frueh, J., & Tverdokhlebov,S.I, “Nitrogen-doped titanium dioxide films fabricated via magnetron sputtering for vascular stent biocompatibility improvement”, Journal of Colloid and Interface Science, 626: 101-112 (2022).
  • [26] Saoula, N., Bait, L., Sali, S., Azibi, M., Hammouche, A., & Madaoui, N., “Reactive Magnetron Sputter Deposition of Titanium Oxynitride TiNxOy Coatings: Influence of SubstrateBias Voltage on the Structure, Composition, and Properties. Protection of Metals and Physical Chemistry of Surfaces, 55(4): 743-747 (2019).
  • [27] Sahu, B. P. Ray, M., & Mitra, R., “Structure and properties of Ni1-xTixN thin films processed by reactive magnetron co-sputtering”, Materials Characterization, 169: 110604 (2020).
  • [28] Guillot, J., Jouaiti, A., Imhoff, L., Domenichini, B., Heintz, O., Zerkout, S., Mosser, A., & Bourgeois, S., “Nitrogen plasma pressure influence on the composition of TiNxOy sputtered films”. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 33(7): 577-582 (2002).
  • [29] Jokanović, V., Bundaleski, N. Petrović, B., Ferarra, M., Jokanović, B., Živković, S., & Nasov,I., “Detailed phisyco-chemical characterization of the multilayered thin films based on titanium oxynitride and copper doped titanium nitride obtained by different PVD techniques”, Vacuum, 195: 110708 (2022).
  • [30] Čolović, B. Kisić, D. Jokanović, B. Rakočević, Z., Nasov, I. Petkoska, A. T., & Jokanović, V., “Wetting properties of titanium oxides, oxynitrides and nitrides obtained by DC and pulsed magnetron sputtering and cathodic arc evaporation”, Materials Science-Poland, 37(2): 173-181 (2019).
  • [31] Wu, P. G. Ma, C. H., & Shang, J. K., “Effects of nitrogen doping on optical properties of TiO2 thin films”, Applied Physics A, 81: 1411- 1417 (2005).
  • [32] Zhao, H., Humbeeck, J. V. Sohier, J., & Scheerder, I.D.,“Electrochemical polishing of 316L stainless steel slotted tube coronary stents”, Journal of Materials science: materials in medicine, 13: 911-916 (2002).
  • [33] Fatimah, S. Ragadhita, R. Al Husaeni, D. F., & Nandiyanto, A. B. D., “How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method”, ASEAN Journal of Science and Engineering, 2(1): 65-76 (2022).

TiN, TiO, TiOxNy İnce Filmlerin Optik, Yüzey ve Yapısal Özellikleri Üzerine Tavlama Sıcaklığının Etkileri

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1429518

Abstract

Titanyum nitrür (TiN), titanyum oksit (TiO) ve titanyum oksinitrür (TiOxNy) ince filmleri eş-odaklı geometriye sahip püskürtme tekniği kullanılarak soda lime glass (SLG), katkısız silisyum (i-Si) ve 316L paslanmaz çelik (316LSS) alttaşlar üzerine büyütülmüştür. Elde edilen filmlerin fiziksel özelliklerinin iyileştirilmesi amacıyla, difüzyon fırınında farklı sıcaklıklarda ısıl işleme tabi tutulmuş ve filmlerin optik, yüzey ve yapısal özellikleri üzerine tavlama sıcaklığının etkisi araştırılmıştır. TiN, TiO, TiOxNy ince filmlerinin optik özellikleri Zayıflatılmış Toplam Yansıma (ATR), Fourier dönüşümü kızılötesi spektroskopisi (FTIR) ile yapısal özellikleri X-ışını kırınım difraktometresi (XRD) ile yüzey özellikleri atomik kuvvet mikroskobu (AFM) ile belirlenmiştir. Analizlerden elde edilen sonuçlara göre, tavlama sıcaklığı TiN, TiO, TiOxNy ince filmlerin fiziksel özelliklerinde iyileşme yaratmıştır.

References

  • [1] Yavuz, H. İ., & Yamanoğlu, R. “β tipi Ti alaşımlarının özellikleri üzerine bir derleme: mikroyapı, mekanik, korozyon özellikleri ve üretim yöntemleri”, Politeknik Dergisi, 26(4), 1601-1620, (2023).
  • [2] Sarıkayak, A., Koc, E., Kalkan, M., & Toker, S. M. “Yüzeyinde mikrodeformasyon alanları oluşturulan 316L paslanmaz çeliğin biyomimetik olarak kaplanması”, Politeknik Dergisi, 26(4), 1349-1358, (2023).
  • [3] Momma, C., Knop, U., & Nolte, S. “Laser cutting of slotted tube coronary stents-state-of-the-art and future developments”, Progress in Biomedical Research, 4(1), 39-44, (1999).
  • [4] Subaşı, M., & Karataş, Ç. “Titanyum ve titanyum alaşımlarından yapılan implantlar üzerine inceleme”, Politeknik Dergisi, 15(2), 87-103, (2012).
  • [5] Yıldırım, M. S., & Kaya, Y. “Patlamalı Kaynak Yöntemi Kullanılarak Üretilen Bakır- Titanyum Bimetalik Kompozit Malzemelerin Birleştirme Arayüzeyinin İncelenmesi”, Politeknik Dergisi, 27(1), 47-58, (2024).
  • [6] Ada, H., El Rubaye, A. Q. J., Aşıkuzun, E., Mavi, A., Kaplan, Y., & Aksöz, S. “Investigation of Wear, Surface, Metallurgical and Mechanical Properties of Ti6Al4V Alloys Coated with PVD Method”, Politeknik Dergisi, 1-1, Erken Görünüm (2024).
  • [7] Aydın, M. “Titanyum alaşımının yüksek-hızlı işleme süreci: Kapsamlı sonlu eleman modelleme”, Politeknik Dergisi, 25(2), 813-826, (2022).
  • [8] Hermawan, H., & Mantovani, D. “Process of prototyping coronary stents from biodegradable Fe–Mn alloys”, Acta biomaterialia, 9(10), 8585-8592, (2013).
  • [9] Kobo, O., Saada, M., Meisel, S. R., Hellou, E., Frimerman, A., Fanne, R. A., Mohsen, J., Danon, A., & Roguin, A. “Modern stents: where are we going?”, Rambam Maimonides Medical Journal, 11(2), (2020).
  • [10] Beshchasna, N., Saqib, M., Kraskiewicz, H., Wasyluk, Ł., Kuzmin, O., Duta, O. C., Ficai, D., Ghizdavet, Z., Marin, A., Ficai, A., Sun, Z., Pichugin, V. F., Opitz, J., & Andronescu, E. “Recent advances in manufacturing innovative stents”, Pharmaceutics, 12(4), 349, (2020).
  • [11] Windecker, S., Mayer, I., De Pasquale, G., Maier, W., Dirsch, O., De Groot, P., Wu, Ya- Ping., Noll, G., Leskosek, B., Meier, B., Hess, O.M. & Working Group on Novel Surface Coating of Biomedical Devices (SCOL). “Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia”, Circulation, 104(8), 928-933, (2001).
  • [12] Scarano, A., Piattelli, M., Vrespa, G., Caputi, S., & Piattelli, A. “Bacterial adhesion on titanium nitride-coated and uncoated implants: an in vivo human study”, Journal of Oral Implantology, 29(2), 80-85, (2003).
  • [13] Karjalainen PP, Ylitalo A, Airaksinen KEJ, Nammas W. “Ti-tanium-nitride-oxide-coated Titan-2 bioactive coronary stent: a new horizon for coronary intervention”, Expert Review of Medical Devices, 7(5): 599-604, (2010).
  • [14] Jung, M. J., Nam, K. H., Chung, Y. M., Boo, J. H., and Han, J. G., “The physiochemical properties of TiOxNy films with controlled oxygen partial pressure”, Surface & Coatings Technology, 171: 71-74, (2003).
  • [15] Kola, P. V., Daniels, S. Cameron, D. C., and Hashmi, M. S. J., “Magnetron sputtering of tin protective coatings for medical applications”, Journal of Materials Processing Technology, 56: 422-430 (1996).
  • [16] Hove, R. P. V., Sierevelt, I. N., Royen, B. J. V., and Nolte, P. A., Hindawi Publishing Corporation BioMed Research International, 1-9 (2015).
  • [17] Banakh, O. Mousa, M., Matthey, J., Pontearso, A., Lorente, M. C., Sanjines, R., Fontana, P., Wiskott, A., and Durual, S., “Sputtered titanium oxynitride coatings for endosseous applications: physical and chemical evaluation and first bioactivity assays”, Applied Surface Science, 317: 986-993 (2014).
  • [18] Gotman, I., Gutmanas, E.Y., “Titanium nitride-based coatings on implantable medical devices”, Advanced Biomaterials and Devices in Medicine, 1: 53-73 (2014).
  • [19] Subramanian, B., Muraleedharan, C. V. Ananthakumar, R., & Jayachandran, M., “A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants”, Surface and Coatings Technology, 205(21-22): 5014-5020 (2011).
  • [20] Pham, V. H., Jun, S. H., Kim, H. E. & Koh, Y. H. “Deposition of titanium nitride (TiN) on Co–Cr and their potential application as vascular stent”, Applied Surface Science, 258(7): 2864-2868 (2012).
  • [21] Leng, Y. X., Wang, J., Yang, P., Chen, J. Y., & Huang, N., “The adhesion and clinical application of titanium oxide film on a 316 L vascular stent”, Surface and Coatings Technology, 363: 430-435 (2019).
  • [22] Hou, S., Yu, W., Yang, Z., Li, Y., Yang, L., & Lang, S., “Properties of titanium oxide coating on MgZn alloy by magnetron sputtering for stent application”, Coatings, 10(10): 999 (2020).
  • [23] Huan, Z., Fratila-Apachitei, L. E., Apachitei, I., & Duszczyk, J., “Characterization of porous TiO2 surfaces formed on 316L stainless steel by plasma electrolytic oxidation for stent applications”, Journal of functional biomaterials, 3(2): 349-360 (2012).
  • [24] Beshchasna, N. Ho, A. Y. K., Saqib, M., Kraśkiewicz, H., Wasyluk, Ł., Kuzmin, O., Duta,O.C., Ficai, D., Trusca, R. D., Ficai, A., Pichugin, V. F., Opitz, J., & Andronescu, E.,”Surface evaluation of titanium oxynitride coatings used for developing layered cardiovascular stents”, Materials Science and Engineering: C, 99: 405-416 (2019).
  • [25] Sun, Z., Khlusov, I. A., Evdokimov, K. E., Konishchev, M. E., Kuzmin, O. S., Khaziakhmatova,O.G., Malashchenko, V. V., Litvinova, L. S., Rutkowski, S., Frueh, J., & Tverdokhlebov,S.I, “Nitrogen-doped titanium dioxide films fabricated via magnetron sputtering for vascular stent biocompatibility improvement”, Journal of Colloid and Interface Science, 626: 101-112 (2022).
  • [26] Saoula, N., Bait, L., Sali, S., Azibi, M., Hammouche, A., & Madaoui, N., “Reactive Magnetron Sputter Deposition of Titanium Oxynitride TiNxOy Coatings: Influence of SubstrateBias Voltage on the Structure, Composition, and Properties. Protection of Metals and Physical Chemistry of Surfaces, 55(4): 743-747 (2019).
  • [27] Sahu, B. P. Ray, M., & Mitra, R., “Structure and properties of Ni1-xTixN thin films processed by reactive magnetron co-sputtering”, Materials Characterization, 169: 110604 (2020).
  • [28] Guillot, J., Jouaiti, A., Imhoff, L., Domenichini, B., Heintz, O., Zerkout, S., Mosser, A., & Bourgeois, S., “Nitrogen plasma pressure influence on the composition of TiNxOy sputtered films”. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 33(7): 577-582 (2002).
  • [29] Jokanović, V., Bundaleski, N. Petrović, B., Ferarra, M., Jokanović, B., Živković, S., & Nasov,I., “Detailed phisyco-chemical characterization of the multilayered thin films based on titanium oxynitride and copper doped titanium nitride obtained by different PVD techniques”, Vacuum, 195: 110708 (2022).
  • [30] Čolović, B. Kisić, D. Jokanović, B. Rakočević, Z., Nasov, I. Petkoska, A. T., & Jokanović, V., “Wetting properties of titanium oxides, oxynitrides and nitrides obtained by DC and pulsed magnetron sputtering and cathodic arc evaporation”, Materials Science-Poland, 37(2): 173-181 (2019).
  • [31] Wu, P. G. Ma, C. H., & Shang, J. K., “Effects of nitrogen doping on optical properties of TiO2 thin films”, Applied Physics A, 81: 1411- 1417 (2005).
  • [32] Zhao, H., Humbeeck, J. V. Sohier, J., & Scheerder, I.D.,“Electrochemical polishing of 316L stainless steel slotted tube coronary stents”, Journal of Materials science: materials in medicine, 13: 911-916 (2002).
  • [33] Fatimah, S. Ragadhita, R. Al Husaeni, D. F., & Nandiyanto, A. B. D., “How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method”, ASEAN Journal of Science and Engineering, 2(1): 65-76 (2022).
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Photonics, Optoelectronics and Optical Communications
Journal Section Research Article
Authors

Yeliz Özkök 0000-0002-6827-3561

Mustafa Öztürk 0000-0002-8508-5714

Mehmet Çakmak 0000-0003-1727-8634

Early Pub Date August 23, 2024
Publication Date
Submission Date February 2, 2024
Acceptance Date August 21, 2024
Published in Issue Year 2025 EARLY VIEW

Cite

APA Özkök, Y., Öztürk, M., & Çakmak, M. (2024). TiN, TiO, TiOxNy İnce Filmlerin Optik, Yüzey ve Yapısal Özellikleri Üzerine Tavlama Sıcaklığının Etkileri. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1429518
AMA Özkök Y, Öztürk M, Çakmak M. TiN, TiO, TiOxNy İnce Filmlerin Optik, Yüzey ve Yapısal Özellikleri Üzerine Tavlama Sıcaklığının Etkileri. Politeknik Dergisi. Published online August 1, 2024:1-1. doi:10.2339/politeknik.1429518
Chicago Özkök, Yeliz, Mustafa Öztürk, and Mehmet Çakmak. “TiN, TiO, TiOxNy İnce Filmlerin Optik, Yüzey Ve Yapısal Özellikleri Üzerine Tavlama Sıcaklığının Etkileri”. Politeknik Dergisi, August (August 2024), 1-1. https://doi.org/10.2339/politeknik.1429518.
EndNote Özkök Y, Öztürk M, Çakmak M (August 1, 2024) TiN, TiO, TiOxNy İnce Filmlerin Optik, Yüzey ve Yapısal Özellikleri Üzerine Tavlama Sıcaklığının Etkileri. Politeknik Dergisi 1–1.
IEEE Y. Özkök, M. Öztürk, and M. Çakmak, “TiN, TiO, TiOxNy İnce Filmlerin Optik, Yüzey ve Yapısal Özellikleri Üzerine Tavlama Sıcaklığının Etkileri”, Politeknik Dergisi, pp. 1–1, August 2024, doi: 10.2339/politeknik.1429518.
ISNAD Özkök, Yeliz et al. “TiN, TiO, TiOxNy İnce Filmlerin Optik, Yüzey Ve Yapısal Özellikleri Üzerine Tavlama Sıcaklığının Etkileri”. Politeknik Dergisi. August 2024. 1-1. https://doi.org/10.2339/politeknik.1429518.
JAMA Özkök Y, Öztürk M, Çakmak M. TiN, TiO, TiOxNy İnce Filmlerin Optik, Yüzey ve Yapısal Özellikleri Üzerine Tavlama Sıcaklığının Etkileri. Politeknik Dergisi. 2024;:1–1.
MLA Özkök, Yeliz et al. “TiN, TiO, TiOxNy İnce Filmlerin Optik, Yüzey Ve Yapısal Özellikleri Üzerine Tavlama Sıcaklığının Etkileri”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1429518.
Vancouver Özkök Y, Öztürk M, Çakmak M. TiN, TiO, TiOxNy İnce Filmlerin Optik, Yüzey ve Yapısal Özellikleri Üzerine Tavlama Sıcaklığının Etkileri. Politeknik Dergisi. 2024:1-.