Research Article
BibTex RIS Cite

Utilizing Factorial Modeling to Probe Multifaceted Mechanical Properties of Polymer Composites

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1480738

Abstract

Design tasks involving multiple complex requirements and constraints reveal the need for extensive materials research in the aerospace industry. This process requires researchers to innovate materials that conform strict design specifications. Reasons given for the advancement of materials neither abrogate material testing requirements nor supersede simplified design approaches. Structural design requires precise tracking of the elastic and strength properties of materials. Hence, tensile, flexural, and interlaminar shear properties are evaluated by the two-factor analysis method in this study. It provides a detailed search and analysis for every conceivable combinations of the factors’ levels through each complete test. The factorial modeling is proposed as a useful method while performing analysis on the mechanical properties rather than roughly providing averaged values for the tested materials.

Ethical Statement

The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Thanks

Vestel Defence and Epsilon Composites are gratefully acknowledged for providing the test specimens and performing measurements using the MTS 45 test machine. The authors thank METU Wind Center for Wind Energy Structures and Materials Laboratory for performing the mechanical tests using the MTS 809 test machine.

References

  • [1] Zhang X., Chen Y. and Chu J., "Recent advances in the development of aerospace materials", Progress in Aerospace Sciences 97: 22 – 34, (2018).
  • [2] Oromiehe E., Prusty B.G., Compston P. and Rajan G., "Automated fibre placement based composite structures: Review on the defects, impacts and inspection techniques", Composite Structures 224: 110987, (2019).
  • [3] Frketic J., Dickens T. and Ramakrishnan S., "Automated manufacturing and processing of fiber reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing", Additive Manufacturing 14: 69 – 86, (2017).
  • [4] Liu Y. and Chou T.W., "Additive manufacturing of multidirectional preforms and composites: from three dimensional to four dimensional", Materials Today Advances 5: 100045, (2020).
  • [5] Centea T., Grunenfelder L.K. and Nutt S.R., "A review of out-of-autoclave prepregs – Material properties, process phenomena, and manufacturing considerations", Composites Part A: Applied Science and Engineering 70: 132 – 154, (2015).
  • [6] Irving P. and Soutis C., eds., "Polymer composites in the aerospace industry" Waltham: Woodhead Publishing, (2015).
  • [7] Sierakowski R.L. and Newaz G. M., eds., "Damage tolerance in advanced composites" Pennsylvania: Technomic Publishing, (1995).
  • [8] Arrieta A.J. & Striz, A.G., “Optimal design of aircraft structures with damage tolerance requirements”, Structural and Multidisciplinary Optimization 30: 155-163, (2005).
  • [9] Scardaoni M.P., Izzi M.I., Montemurro M. and Panettieri E., “Multi-scale deterministic optimization of blended composite structures: case study of a box wing”, Thin-Walled Structures 170: 108521, (2022).
  • [10] Sinha K. & Klimmek T., “A framework for the bi-level optimization of a generic transport aircraft fuselage using aeroelastic loads”, CEAS Aeronautical Journal 14: 127-137, (2023).
  • [11] Bathe K.J., ed., "Finite Element Procedures", USA: Pearson, (2006).
  • [12] McLuckie I.R.W., "Simulation environment for simulating physical system and/or sub-systems", US Patent, Patent no.US8548774B2, (2013).
  • [13] Vigneshwaran K. and Venkateshwaran N., "Statistical analysis of mechanical properties of wood-PLA composites prepared via additive manufacturing", International Journal of Polymer Analysis and Characterization 24: 584– 596, (2019).
  • [14] Erdemir, F. & Özkan, M.T., “Determination of Mechanical Properties of Fruit Shell Powders Reinforced Wood Plastic Composite (WPC) Materials and Case Study for I-Type Snap-Fit Model”, Politeknik Dergisi 26: 1243-1253, (2023).
  • [15] Pany C. “Panel Flutter Numerical Study of Thin Isotropic Flat Plates and Curved Plates With Various Edge Boundary Conditions”, Politeknik Dergisi 26: 1467-73, (2023).
  • [16] Arora, N. et al. "A Comprehensive Review on Fillers and Mechanical Properties of 3D Printed Polymer Composites", Materials Today Communications 40: 109617, (2024).
  • [17] Dhas, J. Edwin Raja & M. Arun. "A review on development of hybrid composites for aerospace applications", Materials Today: Proceedings 64: 267-273 (2022).
  • [18] Yavuz, H. & Bai, J., "Plasma polypyrrole coated hybrid composites with improved mechanical and electrical properties for aerospace applications", Applied Composite Materials 25: 661 – 674, (2017).
  • [19] Liu W., "Principles of determining material allowable and design allowable values of composite aircraft structures", Procedia Engineering 17: 279 – 285, (2011).
  • [20] Montgomery D.C., "Design and Analysis of Experiments" (USA: Wiley, 2013).
  • [21] Causeur D., Dhorne T. and Antoni A., "A two-way analysis of variance model with positive definite interaction for homologous factors", Journal of Multivariate Analysis 95, no. 2: 431– 448, (2005).
  • [22] Erdemir F. & Özkan M.T. “Application of Taguchi Method for Optimization of Design Parameters in Enhancement the Robust of “C” Type Snap-fits” Politeknik Dergisi 25: 1385-, (2022).
  • [23] Günay M., Gündüz S., Yılmaz H., Yaşar N. & Kaçar R., “PLA Esaslı Numunelerde Çekme Dayanımı İçin 3D Baskı İşlem Parametrelerinin Optimizasyonu”, Politeknik Dergisi 23: 73-79, (2020).
  • [24] Bhattacharyya D., Ruhul A.K. and Murari M., "Two-sample nonparametric test for comparing mean time to failure functions in age replacement", Journal of Statistical Planning and Inference 212: 34-44, (2021).
  • [25] Pan Z., Yudong W. and Chongfeng W., "A nonparametric approach to test for predictability", Economics Letters 148: 10-16, (2016).
  • [26] Li J., "Finite sample t-tests for high-dimensional means", Journal of Multivariate Analysis 196: 105183, (2023).
  • [27] Wu Q. and Jiang H., "Two-sample test of stochastic block models", Computational Statistics & Data Analysis 192: 107903, (2024).
  • [28] Zu Y., "Nonparametric specification tests for stochastic volatility models based on volatility density", Journal of Econometrics 187.1: 323-344, (2015).
  • [29] Yavuz H. and Utku D.H., "Parametric and nonparametric tests for the evaluation of interlaminar shear strength of polymer composites", Journal of Reinforced Plastics and Composites, 40: 450-462, (2020).
  • [30] Oh, S., Hong, G., & Choi, S., “Determining the effect of superabsorbent polymers, macrofibers, and resting time on the rheological properties of cement mortar using analysis of variance (ANOVA): A 3D printing perspective”, Journal of Building Engineering, 75, 106967, (2023).
  • [31] Vázquez-González I. et al., "A combined multi-variate statistical analysis to establish dairy farm typologies in Cantabria", Computers and Electronics in Agriculture 221: 109007, (2024).
  • [32] Elmushyakhi A., "Parametric characterization of nano-hybrid wood polymer composites using ANOVA and regression analysis", Structures 29: 652-662, (2021).
  • [33] Walpole R.E., Myers R.H., Myers S.L. and Ye K., "Probability and Statistics for Engineers and Scientists" Boston: Prentice Hall, (2012).
  • [34] Gao C. et al. "Multi-factor analysis of the effects of graphene oxide nanoplatelets on self-healing polymer composites based on micromechanical FE simulation", Computational Materials Science 218: 111980, (2023).
  • [35] Zhou M., Ping W. and Lianbing D., "Research on the factorial effect of science and technology innovation (STI) policy mix using multifactor analysis of variance (ANOVA)", Journal of Innovation & Knowledge 4: 100249, (2022).
  • [36] Ghazali A.A., Sunarti A.R. and Rozaimi A.S., "Factorial analysis on nanocomposite membranes for CO2, CH4 and N2", Materials Today: Proceedings 57: 1306-1314, (2022).

Polimer Kompozitlerin Çok Yönlü Mekanik Özelliklerini Araştırmak için Faktöriyel Modellemenin Kullanılması

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1480738

Abstract

Çoklu karmaşık gereksinimleri ve kısıtlamaları içeren tasarım süreçleri, havacılık endüstrisinde kapsamlı malzeme araştırmasının gerekliliğini ortaya çıkarmaktadır. Bu süreç, araştırmacıların yapısal tasarım özelliklerine uygun malzemeleri yenilikçi bir şekilde geliştirmesini gerektirir. İleri malzeme araştırmalarını gerekli kılan nedenler, malzeme test gereksinimlerini ortadan kaldırmaz ve basitleştirilmiş tasarım yaklaşımlarını geçersiz kılmaz. Yapısal tasarım, malzemelerin elastik ve dayanıklılık özelliklerinin hassas bir şekilde incelenmesini gerektirir. Bu nedenle, bu çalışmada çekme, eğilme ve tabakalar arası kayma özellikleri, iki faktörlü analiz yöntemiyle değerlendirilmiştir. Bu çalışma, her test sürecinde faktör seviyelerinin tüm olası eşleşmeleri için detaylı bir analiz sağlamaktadır. Faktöriyel modelleme, test edilen malzemeler için yaklaşık ortalamalı değerler sağlamak yerine, mekanik özellikler üzerine analiz yaparken kullanışlı bir yöntem olarak önerilmektedir.

References

  • [1] Zhang X., Chen Y. and Chu J., "Recent advances in the development of aerospace materials", Progress in Aerospace Sciences 97: 22 – 34, (2018).
  • [2] Oromiehe E., Prusty B.G., Compston P. and Rajan G., "Automated fibre placement based composite structures: Review on the defects, impacts and inspection techniques", Composite Structures 224: 110987, (2019).
  • [3] Frketic J., Dickens T. and Ramakrishnan S., "Automated manufacturing and processing of fiber reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing", Additive Manufacturing 14: 69 – 86, (2017).
  • [4] Liu Y. and Chou T.W., "Additive manufacturing of multidirectional preforms and composites: from three dimensional to four dimensional", Materials Today Advances 5: 100045, (2020).
  • [5] Centea T., Grunenfelder L.K. and Nutt S.R., "A review of out-of-autoclave prepregs – Material properties, process phenomena, and manufacturing considerations", Composites Part A: Applied Science and Engineering 70: 132 – 154, (2015).
  • [6] Irving P. and Soutis C., eds., "Polymer composites in the aerospace industry" Waltham: Woodhead Publishing, (2015).
  • [7] Sierakowski R.L. and Newaz G. M., eds., "Damage tolerance in advanced composites" Pennsylvania: Technomic Publishing, (1995).
  • [8] Arrieta A.J. & Striz, A.G., “Optimal design of aircraft structures with damage tolerance requirements”, Structural and Multidisciplinary Optimization 30: 155-163, (2005).
  • [9] Scardaoni M.P., Izzi M.I., Montemurro M. and Panettieri E., “Multi-scale deterministic optimization of blended composite structures: case study of a box wing”, Thin-Walled Structures 170: 108521, (2022).
  • [10] Sinha K. & Klimmek T., “A framework for the bi-level optimization of a generic transport aircraft fuselage using aeroelastic loads”, CEAS Aeronautical Journal 14: 127-137, (2023).
  • [11] Bathe K.J., ed., "Finite Element Procedures", USA: Pearson, (2006).
  • [12] McLuckie I.R.W., "Simulation environment for simulating physical system and/or sub-systems", US Patent, Patent no.US8548774B2, (2013).
  • [13] Vigneshwaran K. and Venkateshwaran N., "Statistical analysis of mechanical properties of wood-PLA composites prepared via additive manufacturing", International Journal of Polymer Analysis and Characterization 24: 584– 596, (2019).
  • [14] Erdemir, F. & Özkan, M.T., “Determination of Mechanical Properties of Fruit Shell Powders Reinforced Wood Plastic Composite (WPC) Materials and Case Study for I-Type Snap-Fit Model”, Politeknik Dergisi 26: 1243-1253, (2023).
  • [15] Pany C. “Panel Flutter Numerical Study of Thin Isotropic Flat Plates and Curved Plates With Various Edge Boundary Conditions”, Politeknik Dergisi 26: 1467-73, (2023).
  • [16] Arora, N. et al. "A Comprehensive Review on Fillers and Mechanical Properties of 3D Printed Polymer Composites", Materials Today Communications 40: 109617, (2024).
  • [17] Dhas, J. Edwin Raja & M. Arun. "A review on development of hybrid composites for aerospace applications", Materials Today: Proceedings 64: 267-273 (2022).
  • [18] Yavuz, H. & Bai, J., "Plasma polypyrrole coated hybrid composites with improved mechanical and electrical properties for aerospace applications", Applied Composite Materials 25: 661 – 674, (2017).
  • [19] Liu W., "Principles of determining material allowable and design allowable values of composite aircraft structures", Procedia Engineering 17: 279 – 285, (2011).
  • [20] Montgomery D.C., "Design and Analysis of Experiments" (USA: Wiley, 2013).
  • [21] Causeur D., Dhorne T. and Antoni A., "A two-way analysis of variance model with positive definite interaction for homologous factors", Journal of Multivariate Analysis 95, no. 2: 431– 448, (2005).
  • [22] Erdemir F. & Özkan M.T. “Application of Taguchi Method for Optimization of Design Parameters in Enhancement the Robust of “C” Type Snap-fits” Politeknik Dergisi 25: 1385-, (2022).
  • [23] Günay M., Gündüz S., Yılmaz H., Yaşar N. & Kaçar R., “PLA Esaslı Numunelerde Çekme Dayanımı İçin 3D Baskı İşlem Parametrelerinin Optimizasyonu”, Politeknik Dergisi 23: 73-79, (2020).
  • [24] Bhattacharyya D., Ruhul A.K. and Murari M., "Two-sample nonparametric test for comparing mean time to failure functions in age replacement", Journal of Statistical Planning and Inference 212: 34-44, (2021).
  • [25] Pan Z., Yudong W. and Chongfeng W., "A nonparametric approach to test for predictability", Economics Letters 148: 10-16, (2016).
  • [26] Li J., "Finite sample t-tests for high-dimensional means", Journal of Multivariate Analysis 196: 105183, (2023).
  • [27] Wu Q. and Jiang H., "Two-sample test of stochastic block models", Computational Statistics & Data Analysis 192: 107903, (2024).
  • [28] Zu Y., "Nonparametric specification tests for stochastic volatility models based on volatility density", Journal of Econometrics 187.1: 323-344, (2015).
  • [29] Yavuz H. and Utku D.H., "Parametric and nonparametric tests for the evaluation of interlaminar shear strength of polymer composites", Journal of Reinforced Plastics and Composites, 40: 450-462, (2020).
  • [30] Oh, S., Hong, G., & Choi, S., “Determining the effect of superabsorbent polymers, macrofibers, and resting time on the rheological properties of cement mortar using analysis of variance (ANOVA): A 3D printing perspective”, Journal of Building Engineering, 75, 106967, (2023).
  • [31] Vázquez-González I. et al., "A combined multi-variate statistical analysis to establish dairy farm typologies in Cantabria", Computers and Electronics in Agriculture 221: 109007, (2024).
  • [32] Elmushyakhi A., "Parametric characterization of nano-hybrid wood polymer composites using ANOVA and regression analysis", Structures 29: 652-662, (2021).
  • [33] Walpole R.E., Myers R.H., Myers S.L. and Ye K., "Probability and Statistics for Engineers and Scientists" Boston: Prentice Hall, (2012).
  • [34] Gao C. et al. "Multi-factor analysis of the effects of graphene oxide nanoplatelets on self-healing polymer composites based on micromechanical FE simulation", Computational Materials Science 218: 111980, (2023).
  • [35] Zhou M., Ping W. and Lianbing D., "Research on the factorial effect of science and technology innovation (STI) policy mix using multifactor analysis of variance (ANOVA)", Journal of Innovation & Knowledge 4: 100249, (2022).
  • [36] Ghazali A.A., Sunarti A.R. and Rozaimi A.S., "Factorial analysis on nanocomposite membranes for CO2, CH4 and N2", Materials Today: Proceedings 57: 1306-1314, (2022).
There are 36 citations in total.

Details

Primary Language English
Subjects Manufacturing and Industrial Engineering (Other), Aerospace Materials
Journal Section Research Article
Authors

Hande Girard 0000-0002-7481-8126

Durdu Hakan Utku 0000-0002-5755-6101

Early Pub Date October 1, 2024
Publication Date
Submission Date May 8, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Girard, H., & Utku, D. H. (2024). Utilizing Factorial Modeling to Probe Multifaceted Mechanical Properties of Polymer Composites. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1480738
AMA Girard H, Utku DH. Utilizing Factorial Modeling to Probe Multifaceted Mechanical Properties of Polymer Composites. Politeknik Dergisi. Published online October 1, 2024:1-1. doi:10.2339/politeknik.1480738
Chicago Girard, Hande, and Durdu Hakan Utku. “Utilizing Factorial Modeling to Probe Multifaceted Mechanical Properties of Polymer Composites”. Politeknik Dergisi, October (October 2024), 1-1. https://doi.org/10.2339/politeknik.1480738.
EndNote Girard H, Utku DH (October 1, 2024) Utilizing Factorial Modeling to Probe Multifaceted Mechanical Properties of Polymer Composites. Politeknik Dergisi 1–1.
IEEE H. Girard and D. H. Utku, “Utilizing Factorial Modeling to Probe Multifaceted Mechanical Properties of Polymer Composites”, Politeknik Dergisi, pp. 1–1, October 2024, doi: 10.2339/politeknik.1480738.
ISNAD Girard, Hande - Utku, Durdu Hakan. “Utilizing Factorial Modeling to Probe Multifaceted Mechanical Properties of Polymer Composites”. Politeknik Dergisi. October 2024. 1-1. https://doi.org/10.2339/politeknik.1480738.
JAMA Girard H, Utku DH. Utilizing Factorial Modeling to Probe Multifaceted Mechanical Properties of Polymer Composites. Politeknik Dergisi. 2024;:1–1.
MLA Girard, Hande and Durdu Hakan Utku. “Utilizing Factorial Modeling to Probe Multifaceted Mechanical Properties of Polymer Composites”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1480738.
Vancouver Girard H, Utku DH. Utilizing Factorial Modeling to Probe Multifaceted Mechanical Properties of Polymer Composites. Politeknik Dergisi. 2024:1-.