Research Article
BibTex RIS Cite

Kobalt Katkılı SiCNT'nin Elektronik ve Mıknatıs Özellikleri: İlk Prensip Çalışması

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1536597

Abstract

Kiralite (6,0) ile tek duvarlı SiC:Co nanotüplerin fiziksel özellikleri üzerindeki kusur etkisi yoğunluk fonksiyonel teorisine dayalı olarak incelenmiştir. Tek duvarlı SiC nano sistemlerinin elektronik özelliklerinin metal girişiyle önemli ölçüde değiştiğini ve bu sistemlerin manyetik özellikler gösterdiğini elde ettik. Atomik ve moleküler ölçekte verilerin değişebilirliği nedeniyle, ab-initio ve yoğunluk fonksiyonel teorisi formalizmlerini uygulayarak durum yoğunluğunun doğru tahmini karmaşıktır. Hubbard U yöntemi kullanılarak yerel yoğunluk ve yerel spin yoğunluğu yaklaşımları içinde SiC yığın yapısı ve nanotüp için 3,3 ve 0,98 eV'lik hesaplanan enerji bant aralıkları elde edilmiştir. Analizimiz, SiC:Co sisteminin manyetik momentinin ~1,9 µB'ye eşit olduğunu ve katkısız SiC'nin manyetik olmayan bir sistem olduğunu göstermektedir. Sonuçlara göre SiC:Co nanotüpler manyetizma indükler. Toplam enerjilerin hesaplanması antiferromanyetik fazın kararlılığını öngörmüştür. Böylece, metal katkılı SiC sistemlerinin ayarlanabilir elektronik ve manyetik özellikleri, daha uygun SiC tabanlı spintronik ve alan elektron emisyon cihazları için esnek bir tasarım yöntemi sunmaktadır.

References

  • [1] Li K., “Wang W., Cao D., “Metal (Pd, Pt)-decorated carbon nanotubes for CO and NO sensing”, Sensors and Actuactors B: Chemical, 158 (1):171-177, (2011).
  • [2] Eleni C.V., Romanos G.E., Karanikolos G.N., Kanellopoulos N.K., “Catalytic NOx removal by single-wall carbon nanotube-supported Rh nanoparticles”, Journal of Hazardous Materials, 194:144-155, (2011).
  • [3] Wang R., Zhang D., Liu C., “The germanium-doped boron nitride nanotube serving as a potential resource for the detection of carbon monoxide and nitric oxide”, Computational Materials Science, 82:361-366, (2014).
  • [4] Liu L., Jin J., Hou F., Li S., C. Lee H., “Catalytic Effects of calcium and potassium on a curved char surface in fuel reburning: a first-principles study on the adsorption of nitric oxide on single-wall carbon nanotubes with metal decoration”, Energy, 125:459-469, (2017).
  • [5] Matsunami H., “Technological Breakthroughs in Growth Control of Silicon Carbide for High Power Electronic Devices”, Japanese Journal of Applied Physics, 43:6835, (2004).
  • [6] Ivanov P.A., Chelnokov V.E., “Recent developments in SiC single-crystal electronics, Semicond” Science and Technology, 7: 863, (1992).
  • [7] Narushima T., Goto T., Hirai T., Iguchi Y., “High temperature oxidation of Silicon Carbide and Silicon Nitride”, Matererials Transactions JIM, 38: 821-835, (1997).
  • [8] Wang S.Z., Xu L.Y., Shu B.Y., Xiao B., Zhuang J.Y., Shi E.W., “Physical properties, bulk growth, and applications of SiC single crystal”, Journal of Inorganic Materials, 14:527-534, (1999).
  • [9] Watari K., “High thermal conductivity non-oxide ceramics”, Journal of the Ceramic Society of Japan, 109: 1265, (2001).
  • [10] Zhao M., Xia Y., Li F., Zhang R.Q., Lee S.T., “Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculation”, Phyical Review B, 71:085312, (2005).
  • [11] Mulatu A.T., Nigussa K.N., Daja L.D., “Structural and electronic properties of zigzag single wall (8, 0), (9, 0), and (10, 0) silicon carbide nanotubes”, Materialia, 20:101257, (2021).
  • [12] Larina E.V., Chmyrev V.I., Skorikov V.M., D’yachkov P.N., Makaev D.V., “Band Structure of Silicon Carbide Nanotubes”, Inorganic Materials, 44(8):823–834, (2008).
  • [13] Huang Z., Lü T.Y., Wang H.Q., Zheng J.Ch., “Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO”, AIP Advances, 5,:097204, (2015).
  • [14] Chen Y.K., Liu L.V., Tian W.Q., Wang Y.A., “Theoretical Studies of Transition-Metal-Doped Single-Walled Carbon Nanotubes”, Journal of Physical Chemistry C, 115:9306-9311, (2011).
  • [15] Wang J., Yan W., Gao T., Gao Y., Liu Y., “Analysis of the magnetic and optical properties of (Fe, V)-co-doped 3C–SiC using first-principles calculations”, Journal of Physics and Chemistry of Solids,181(21):111527, (2023).
  • [16] Zhang Y., Jiang S., Li Y., Chen C., Chen Z., Wang X., “The influence of point defects on the electronic structures and optical properties of 3C-SiC”, AIP Advances, 14:055009, (2024).
  • [17] Mishra G., Mohapatra S., Prusty S., Sharma M. K., Chatterjee R., Singh S. K., Mishra D. K., “Magnetic Properties of Nanocrystalline β-SiC,”Journal of Nanoscience and Nanotechnology, 11(6):5049-5053, (2011).
  • [18] Cui Z., Bai K., Ding Y., Wang X., Li E., Zheng J., Wang S., “Electronic and Optical Properties of Janus MoSSe and ZnO vdWs Heterostructures”, Superlattices and Microstructures, 140:106445, (2020).
  • [19] Cui Z., Luo Y., Yu J., Xu Y., “Tuning the Electronic Properties of MoSi2N4 by Molecular Doping: A First Principles Investigation”, Physica E: Low-dimensional Systems and Nanostructures, 134, 114873, (2021).
  • [20] Sun M., Ren Q., Zhao Y., Chou J.P., Yu J., Tang W., “Electronic and Magnetic Properties of 4d Series Transition Metal Substituted Graphene: a First-Principles Study”, Carbon, 120: 265–273, (2017).
  • [21] Sun M., Yan Y., Schwingenschlögl U., “Beryllene: A Promising Anode Material for Na- and K-Ion Batteries with Ultrafast Charge/Discharge and High Specific Capacity”, The Journal of Physical Chemistry Letters, 11:9051–9056, (2020).
  • [22] Chabi, S., Kadel, K., “Two-dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor”, Nanomaterials, 10: 2226, (2020).
  • [23] Gürcan K., Derin B., Ayas E., “Effect of SiC particle size on the microstructural, mechanical and oxidation properties of In-situ synthesized HfB2-SiC composites”, Journal of Polytechnic, 24(2):503-510, (2021).
  • [24] Sun L., Li Y., Li Z., Li Q., Zhou Z., Chen Z., Yang J., Hou J.G., “Electronic structures of SiC nanoribbons”, The Journal of Chemical Physics, 129(17):174114, (2008).
  • [25] Alfieri G., Kimoto T., “Engineering the band gap of SiC nanotubes with a transverse electric field”, Applied Physics Letters, 97: 043108, (2010).
  • [26] Lou P., Lee J.Y., Electrical control of magnetization in narrow zigzag silicon carbon nanoribbons, The Journal of Physical Chemistry C, 113(50): 21213-21217, (2009).
  • [27] Bekaroglu E., Topsakal M., Cahangirov S., Ciraci S., “First-principles study of defects and adatoms in silicon carbide honeycomb structures”, Physical Review B, 81(7): 075433, (2010).
  • [28] [28] Sinelnik A.V., Semenov A.V., “Theoretical study of the band structure of 2H-SiC and 4H-SiC of silicon carbide polytypes”, Condensed Matter Physics, 24:23706,(2021).
  • [29] Park C.H., Cheong B.H., Lee K.H., Chang K.J., “Structural and electronic properties of cubic, 2H, 4H, and 6H SiC”, Physical Review B, 49:4485, (1994).
  • [30] Harris G. L. (Ed.), “Properties of Silicon Carbide, INSPEC, Institution of Electrical Engineers”, London, (1995).
  • [31] Wenzien B., Kackell P., Bechstedt F., “Quasiparticle band structure of silicon carbide polytypes”, Physical Review B, 52:10897, (1995).
  • [32] Jafarova V.N., Rzayeva S.S., Scurtu I.C., Stanca C., Acomi N., Raicu G., Prediction of ferromagnetism in GaN:Ag and SiC:Ag nanotubes, Advances in Natural Sciences Nanoscience and Nanotechnology, 15(3), 035012 , (2024).
  • [33] Ummels R.T., Bobbert P.A., Haeringen W .Van, “Ab initio quasiparticle energies in 2 H, 4 H, and 6 H SiC”, Physical Review B, 58:6795, (1998).
  • [34] Gao S.P. Zhu T., “Quasiparticle band structure calculation for SiC using self-consistent GW method”, About Acta Physica Sinica, 61:137103, (2012).
  • [35] Methfessel M., Paxton A., “High-precision sampling for Brillouin-zone integration in metals”, Physical Review B, 40, 3616, (1989).
  • [36] Gözükizil M.F., Birelli A., “Al, Cu doped-undoped TiO2 thin film deposition and the effect of doping on film properties”, Journal of Polytechnic, 27(3):1081-1087, (2024).
  • [37] Zan R., Altuntepe A., Erkan S., Seyhan A., “Nitrogen doped graphene film synthesis and characterization”, Journal of Polytechnic, 25(2):667-673, (2022).
  • [38] Sun X.K., Liu J.W., Liu K.L., Wang S.H., Zhao L.L., Qin, W., Wang G.L., Meng M., Li J.T., Dong X., “Effect of temperature on the structure and magnetic properties of Co doped SiC films”, Superlattices and Microstructures, 107:144–149, (2017).

Electronic and Magnet Properties of Cobalt Doped SiCNT: A First-Principles Study

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1536597

Abstract

The defect effect on the physical properties of metal-doped (Co) SWSiC nanotubes (6,0) were studied based on density functional theory. We obtained that the electronic properties of the SWSiC nano systems are significantly changed by metal introduction and these systems show magnetic properties. The configurations of Cobalt types of metal-doped silicon carbide (SiC) system were explored by the first-principles calculations. Ab-initio computation and density functional theory (DFT) are the most promising methods for proper calculation of the electronic structure theory.
Due to the mutability, of data at the atomic and molecular scale, correct prediction of the overall density of states applying the Ab-initio and DFT formalisms is complicated. The computed energy band gaps of 0.98 eV and 3.3 were obtained for the SiC bulk structure, nanotube, and doped systems within local density and local spin density estimates using the Hubbard U method. Our analysis indicates that, for the Co-SiC system, the overall magnetic moment of this system are equal to ~1.9 µB and the undoped SiC system is a nonmagnetic system. According to the results of first-principles accounts, co-doped SiC nanotubes induce magnetism. The calculations of the overall energies predicted the stability of ferromagnetic phase. Thus, the tunable electronic and magnetic properties of metal-doped SiC systems provide a flexible design method for more suitable SiC-based spintronics and field-electron emission devices.

References

  • [1] Li K., “Wang W., Cao D., “Metal (Pd, Pt)-decorated carbon nanotubes for CO and NO sensing”, Sensors and Actuactors B: Chemical, 158 (1):171-177, (2011).
  • [2] Eleni C.V., Romanos G.E., Karanikolos G.N., Kanellopoulos N.K., “Catalytic NOx removal by single-wall carbon nanotube-supported Rh nanoparticles”, Journal of Hazardous Materials, 194:144-155, (2011).
  • [3] Wang R., Zhang D., Liu C., “The germanium-doped boron nitride nanotube serving as a potential resource for the detection of carbon monoxide and nitric oxide”, Computational Materials Science, 82:361-366, (2014).
  • [4] Liu L., Jin J., Hou F., Li S., C. Lee H., “Catalytic Effects of calcium and potassium on a curved char surface in fuel reburning: a first-principles study on the adsorption of nitric oxide on single-wall carbon nanotubes with metal decoration”, Energy, 125:459-469, (2017).
  • [5] Matsunami H., “Technological Breakthroughs in Growth Control of Silicon Carbide for High Power Electronic Devices”, Japanese Journal of Applied Physics, 43:6835, (2004).
  • [6] Ivanov P.A., Chelnokov V.E., “Recent developments in SiC single-crystal electronics, Semicond” Science and Technology, 7: 863, (1992).
  • [7] Narushima T., Goto T., Hirai T., Iguchi Y., “High temperature oxidation of Silicon Carbide and Silicon Nitride”, Matererials Transactions JIM, 38: 821-835, (1997).
  • [8] Wang S.Z., Xu L.Y., Shu B.Y., Xiao B., Zhuang J.Y., Shi E.W., “Physical properties, bulk growth, and applications of SiC single crystal”, Journal of Inorganic Materials, 14:527-534, (1999).
  • [9] Watari K., “High thermal conductivity non-oxide ceramics”, Journal of the Ceramic Society of Japan, 109: 1265, (2001).
  • [10] Zhao M., Xia Y., Li F., Zhang R.Q., Lee S.T., “Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculation”, Phyical Review B, 71:085312, (2005).
  • [11] Mulatu A.T., Nigussa K.N., Daja L.D., “Structural and electronic properties of zigzag single wall (8, 0), (9, 0), and (10, 0) silicon carbide nanotubes”, Materialia, 20:101257, (2021).
  • [12] Larina E.V., Chmyrev V.I., Skorikov V.M., D’yachkov P.N., Makaev D.V., “Band Structure of Silicon Carbide Nanotubes”, Inorganic Materials, 44(8):823–834, (2008).
  • [13] Huang Z., Lü T.Y., Wang H.Q., Zheng J.Ch., “Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO”, AIP Advances, 5,:097204, (2015).
  • [14] Chen Y.K., Liu L.V., Tian W.Q., Wang Y.A., “Theoretical Studies of Transition-Metal-Doped Single-Walled Carbon Nanotubes”, Journal of Physical Chemistry C, 115:9306-9311, (2011).
  • [15] Wang J., Yan W., Gao T., Gao Y., Liu Y., “Analysis of the magnetic and optical properties of (Fe, V)-co-doped 3C–SiC using first-principles calculations”, Journal of Physics and Chemistry of Solids,181(21):111527, (2023).
  • [16] Zhang Y., Jiang S., Li Y., Chen C., Chen Z., Wang X., “The influence of point defects on the electronic structures and optical properties of 3C-SiC”, AIP Advances, 14:055009, (2024).
  • [17] Mishra G., Mohapatra S., Prusty S., Sharma M. K., Chatterjee R., Singh S. K., Mishra D. K., “Magnetic Properties of Nanocrystalline β-SiC,”Journal of Nanoscience and Nanotechnology, 11(6):5049-5053, (2011).
  • [18] Cui Z., Bai K., Ding Y., Wang X., Li E., Zheng J., Wang S., “Electronic and Optical Properties of Janus MoSSe and ZnO vdWs Heterostructures”, Superlattices and Microstructures, 140:106445, (2020).
  • [19] Cui Z., Luo Y., Yu J., Xu Y., “Tuning the Electronic Properties of MoSi2N4 by Molecular Doping: A First Principles Investigation”, Physica E: Low-dimensional Systems and Nanostructures, 134, 114873, (2021).
  • [20] Sun M., Ren Q., Zhao Y., Chou J.P., Yu J., Tang W., “Electronic and Magnetic Properties of 4d Series Transition Metal Substituted Graphene: a First-Principles Study”, Carbon, 120: 265–273, (2017).
  • [21] Sun M., Yan Y., Schwingenschlögl U., “Beryllene: A Promising Anode Material for Na- and K-Ion Batteries with Ultrafast Charge/Discharge and High Specific Capacity”, The Journal of Physical Chemistry Letters, 11:9051–9056, (2020).
  • [22] Chabi, S., Kadel, K., “Two-dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor”, Nanomaterials, 10: 2226, (2020).
  • [23] Gürcan K., Derin B., Ayas E., “Effect of SiC particle size on the microstructural, mechanical and oxidation properties of In-situ synthesized HfB2-SiC composites”, Journal of Polytechnic, 24(2):503-510, (2021).
  • [24] Sun L., Li Y., Li Z., Li Q., Zhou Z., Chen Z., Yang J., Hou J.G., “Electronic structures of SiC nanoribbons”, The Journal of Chemical Physics, 129(17):174114, (2008).
  • [25] Alfieri G., Kimoto T., “Engineering the band gap of SiC nanotubes with a transverse electric field”, Applied Physics Letters, 97: 043108, (2010).
  • [26] Lou P., Lee J.Y., Electrical control of magnetization in narrow zigzag silicon carbon nanoribbons, The Journal of Physical Chemistry C, 113(50): 21213-21217, (2009).
  • [27] Bekaroglu E., Topsakal M., Cahangirov S., Ciraci S., “First-principles study of defects and adatoms in silicon carbide honeycomb structures”, Physical Review B, 81(7): 075433, (2010).
  • [28] [28] Sinelnik A.V., Semenov A.V., “Theoretical study of the band structure of 2H-SiC and 4H-SiC of silicon carbide polytypes”, Condensed Matter Physics, 24:23706,(2021).
  • [29] Park C.H., Cheong B.H., Lee K.H., Chang K.J., “Structural and electronic properties of cubic, 2H, 4H, and 6H SiC”, Physical Review B, 49:4485, (1994).
  • [30] Harris G. L. (Ed.), “Properties of Silicon Carbide, INSPEC, Institution of Electrical Engineers”, London, (1995).
  • [31] Wenzien B., Kackell P., Bechstedt F., “Quasiparticle band structure of silicon carbide polytypes”, Physical Review B, 52:10897, (1995).
  • [32] Jafarova V.N., Rzayeva S.S., Scurtu I.C., Stanca C., Acomi N., Raicu G., Prediction of ferromagnetism in GaN:Ag and SiC:Ag nanotubes, Advances in Natural Sciences Nanoscience and Nanotechnology, 15(3), 035012 , (2024).
  • [33] Ummels R.T., Bobbert P.A., Haeringen W .Van, “Ab initio quasiparticle energies in 2 H, 4 H, and 6 H SiC”, Physical Review B, 58:6795, (1998).
  • [34] Gao S.P. Zhu T., “Quasiparticle band structure calculation for SiC using self-consistent GW method”, About Acta Physica Sinica, 61:137103, (2012).
  • [35] Methfessel M., Paxton A., “High-precision sampling for Brillouin-zone integration in metals”, Physical Review B, 40, 3616, (1989).
  • [36] Gözükizil M.F., Birelli A., “Al, Cu doped-undoped TiO2 thin film deposition and the effect of doping on film properties”, Journal of Polytechnic, 27(3):1081-1087, (2024).
  • [37] Zan R., Altuntepe A., Erkan S., Seyhan A., “Nitrogen doped graphene film synthesis and characterization”, Journal of Polytechnic, 25(2):667-673, (2022).
  • [38] Sun X.K., Liu J.W., Liu K.L., Wang S.H., Zhao L.L., Qin, W., Wang G.L., Meng M., Li J.T., Dong X., “Effect of temperature on the structure and magnetic properties of Co doped SiC films”, Superlattices and Microstructures, 107:144–149, (2017).
There are 38 citations in total.

Details

Primary Language English
Subjects Material Physics, Quantum Physics (Other)
Journal Section Research Article
Authors

Sevda Rzayeva 0009-0006-9747-3972

Vusala Jafarova 0000-0002-0643-1464

Early Pub Date November 14, 2024
Publication Date
Submission Date August 21, 2024
Acceptance Date October 17, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Rzayeva, S., & Jafarova, V. (2024). Electronic and Magnet Properties of Cobalt Doped SiCNT: A First-Principles Study. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1536597
AMA Rzayeva S, Jafarova V. Electronic and Magnet Properties of Cobalt Doped SiCNT: A First-Principles Study. Politeknik Dergisi. Published online November 1, 2024:1-1. doi:10.2339/politeknik.1536597
Chicago Rzayeva, Sevda, and Vusala Jafarova. “Electronic and Magnet Properties of Cobalt Doped SiCNT: A First-Principles Study”. Politeknik Dergisi, November (November 2024), 1-1. https://doi.org/10.2339/politeknik.1536597.
EndNote Rzayeva S, Jafarova V (November 1, 2024) Electronic and Magnet Properties of Cobalt Doped SiCNT: A First-Principles Study. Politeknik Dergisi 1–1.
IEEE S. Rzayeva and V. Jafarova, “Electronic and Magnet Properties of Cobalt Doped SiCNT: A First-Principles Study”, Politeknik Dergisi, pp. 1–1, November 2024, doi: 10.2339/politeknik.1536597.
ISNAD Rzayeva, Sevda - Jafarova, Vusala. “Electronic and Magnet Properties of Cobalt Doped SiCNT: A First-Principles Study”. Politeknik Dergisi. November 2024. 1-1. https://doi.org/10.2339/politeknik.1536597.
JAMA Rzayeva S, Jafarova V. Electronic and Magnet Properties of Cobalt Doped SiCNT: A First-Principles Study. Politeknik Dergisi. 2024;:1–1.
MLA Rzayeva, Sevda and Vusala Jafarova. “Electronic and Magnet Properties of Cobalt Doped SiCNT: A First-Principles Study”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1536597.
Vancouver Rzayeva S, Jafarova V. Electronic and Magnet Properties of Cobalt Doped SiCNT: A First-Principles Study. Politeknik Dergisi. 2024:1-.