Research Article
BibTex RIS Cite

Synthesis of Reduced Graphene Oxide Coated and Molybdenum Deposited Nickel Foam Electrode in Order to be Used at the Anode of the Microbial Fuel Cell

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1562930

Abstract

Microbial fuel cells (MFCs) are chemical reactors that can convert the chemical energy stored in the bonds of organic compounds into electrical energy through catalytic reactions of microorganisms in an anaerobic environment. It is important to develop these systems to reduce the current costs of wastewater treatment systems and to evaluate urban wastewater, having a great energy potential in terms of biodegradable organic substances, while reducing its polluting effects on the environment. The structure of the material used as anode electrode in MFC cells directly affects the adhesion of microorganisms to the anode, oxidation of the substrate and electron transfer. In order to be used in MFC, nickel foam (NF) with a three-dimensional and macroporous structure was coated with reduced graphene oxide (rGO) to ensure a good electrical connection by attachment of microorganisms to the surface and the most suitable molybdenum (Mo) loading method was determined to increase the adhesion of electron-producing bacterial species to the surface. Also, the effects of heat treatment with H2 gas before loading and using ethylene glycol (EG) as reducing agent in the hydrothermal deposition were investigated in Mo loadings. As a result of the study, it was observed that adding EG to the starting solution increased Mo loading, while passing H2 gas disrupted the surface morphology. When the SEM images and EDS analyzes were examined after the study, it was observed that the most homogeneous surface morphology and the highest efficiency were in the NK/rGO/Mo-E sample, which contained 84.39% Mo by mass.

Project Number

FCD-2023-8721

References

  • [1] Kan Kaynar N., "Yenilenebilir enerji kaynaklarından güneş enerjisinin Amasya ilindeki potansiyeli", Bilge Int. J. Sci. Technol. Res., 4(2): 48–54, (2020).
  • [2] Cai T., Meng L., Chen G., Xi Y., Jiang N., Song J., Zheng S., Liu Y., Zhen G., Huang M., “Application of advanced anodes in microbial fuel cells for power generation: A review”, Chemosphere, 125985, (2020).
  • [3] Deniz Yakıncı Z., Kök M., “Yenilenebilir enerji ve toplum sağlığı”, İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksekokulu Dergisi, 5(1): 43–55, (2017).
  • [4] Dessie Y., Tadesse S., “Advancements in bioelectricity generation through nanomaterial-modified anode electrodes in microbial fuel cells”, Front. Nanotechnol., 4: 1–16, (2022).
  • [5] Erensoy A., Çek N., “Mikrobiyal yakıt hücrelerinde kullanılan saf kültür mikroorganizmaları ve genel özellikleri”, Eur. J. Sci. Technol., 18:109–117, (2020).
  • [6] Akçay G. H, Ar İ., “Investigation of domestic wastewater treatment and electricity generation using a two chambered microbial fuel cell with composite anode electrode”, Afyon Kocatepe Univ. J. Sci. Eng., 23(1): 177–185, (2023).
  • [7] Mohan Y., Manoj Muthu Kumar S., Das D., “Electricity generation using microbial fuel cells”, Int. J. Hydrogen Energy, 33(1): 423–426, (2008).
  • [8] Watanabe K., “Recent developments in microbial fuel cell technologies for sustainable bioenergy”, J. Biosci. Bioeng., 106(6): 528–536, (2008).
  • [9] Özcan E., “Mikrobiyal yakıt hücrelerinde membran ve işletme şartlarındaki değişimin güç üretimine etkisi”, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, (2013).
  • [10] Oh S. E, Logan B. E., “Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells”, Appl. Microbiol. Biotechnol., 70(2): 162–169, (2006).
  • [11] Zhang Y., “Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies”, Doktora Tezi, DTU Environment, Technical University of Denmark, (2012).
  • [12] Liu H., Logan B. E., “Electricity generation using an air-cathode single chamber microbial fuel cell (MFC) in the absence of a proton exchange membrane”, Environ. Sci. Technol., 38(1): 4040–4046, (2004).
  • [13] Ren Y., Chen J., Shi Y., Li X., Yang N., Wang X., “Anolyte recycling enhanced bioelectricity generation of the buffer-free single-chamber air-cathode microbial fuel cell”, Bioresour. Technol., 244: 1183–1187, (2017).
  • [14] Liu H., Cheng S., Logan B. E. “Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell”, Environ. Sci. Technol., 39(2): 658–662, (2005).
  • [15] Huang H., Cheng S., Li F., Mao Z., Lin Z., Cen K., “Enhancement of the denitrification activity by exoelectrogens in single-chamber air cathode microbial fuel cells”, Chemosphere, 225: 548–556, (2019).
  • [16] Larrosa-Guerrero A., Scott K., Head I. M., Mateo F., Ginesta A., Godinez C., “Effect of temperature on the performance of microbial fuel cells”, Fuel, 89(12): 3985–3994, (2010).
  • [17] Oyiwona G. E, Ogbonna J. C, Anyanwu C. U, Okabe S., “Electricity generation potential of poultry droppings wastewater in microbial fuel cell using rice husk charcoal electrodes”, Bioresour. Bioprocess., 5:13, (2018).
  • [18] Zhao W., Fu W., Chen S., Xiong H., Lan L., Jiang M., Patil S. A., Chen S., “High-capacitance bioanode circumvents bioelectrochemical reaction transition in the voltage-reversed serially-stacked air-cathode microbial fuel cell”, J. Power Sources, 468: 228402, (2020).
  • [19] He Z., Wagner N., Minteer S. D, Angenent L. T. “An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy”, Environ. Sci. Technol., 40(17): 5212–5217, (2006).
  • [20] He Z., Minteer S. D, Angenent L. T., “Electricity generation from artificial wastewater using an upflow microbial fuel cell”, Environ. Sci. Technol., 39(14): 5262–5267, (2005).
  • [21] Calli B., Mertoglu B., Roest K., Inanc B., “Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate”, Bioresour. Technol., 97(4): 641–647, (2006).
  • [22] Li H., Cao H., Li T., He Z., Zhao J., Zhang Y., Song H. -L., “Biofilm electrode reactor coupled manganese ore substrate up-flow microbial fuel cell-constructed wetland system: High removal efficiencies of antibiotic, zinc (II), and the corresponding antibiotic resistance genes”, J. Hazard. Mater., 460: 132394, (2023).
  • [23] Rabaey K., Clauwaert P., Aelterman P., Verstraete W., “Tubular microbial fuel cells for efficient electricity generation”, Environ. Sci. Technol., 39(20): 8077–8082, (2005).
  • [24] Karluvalı A., “Kompozit tubular elektrot kullanılan mikrobiyal yakıt hücresinde biyobozunur atıklardan elektrik enerjisi üretimi”, Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, (2016).
  • [25] Zuo Y., Cheng S., Call D. F., Logan B. E., “Scalable tubular membrane cathodes for microbial fuel cell applications”, ACS Natl. Meet. B. Abstr., 41(9): 3347–3353, (2007).
  • [26] Almatouq A., Ahmed M.E., Khajah M., Abdullah H., Al-Yaseen R., Al-Jumaa M., Al-Ajeel F., Shishter A., “Performance of tubular microbial fuel cells using different industrial wastewater”, J. Water Process Eng., 55: 104166, (2023).
  • [27] Tender L. M., Reimers C. E., Stecher H. A, Holmes D. E., Bond D. R., Lowy D. A., Pilobello K., Fertig S. J., Lovley D. R., “Harnessing microbially generated power on the seafloor”, Nat. Biotechnol., 20(8): 821–825, (2002).
  • [28] Lowy D. A, Tender L. M., Zeikus J. G., Park D. H., Lovley D. R., “Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials”, Biosens. Bioelectron., 21(11): 2058–2063, (2006).
  • [29] Babauta J. T., Hsu L., Atci E., Kagan J., Chadwick B., Beyenal H., “Multiple cathodic reaction mechanisms in seawater cathodic biofilms Operating in sediment microbial fuel cells”, ChemSusChem., 7(10): 2898–2906, (2014).
  • [30] Taşkan E., “Sediment tipi mikrobiyal yakıt hücresi kullanılarak arıtma çamurlarından elektrik üretimi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28(1): 15–21, (2016).
  • [31] Perchikov R., Cheliukanov M., Plekhanova Y., Tarasov S., Kharkova A., Butusov D., Arlyapov V., Nakamura H., Reshetilov A., “Microbial biofilms: Features of formation and potential for use in bioelectrochemical devices”, Biosensors, 14(6): 302, (2024).
  • [32] Nitisoravut R., Thanh C. N. D., Regmi R., “Microbial fuel cells: Advances in electrode modifications for improvement of system performance”, Int. J. Green Energy, 14: 712–723, (2017).
  • [33] Zou L., Qiao Y., Wu Z. Y., Wu X. S., Xie J. L., Yu S. H., Guo J., Li C. M., “Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells”, Adv. Energy Mater., 6(4): 1–6, (2016).
  • [34] Chong P., Erable B., Bergel A., “Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review”, Bioresour. Technol., 289: 121641, (2019).
  • [35] Feng Y., Yang Q., Wang X., Logan B. E., “Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells”, J. Power Sources, 195: 1841–1844, (2010).
  • [36] Logan B. E., Cheng S., Watson V., Estadt G., “Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells”, Environ. Sci. Technol., 41: 3341–3346, (2007).
  • [37] Cheng S., Logan B. E., “Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells”, Electrochem. Commun., 9: 492–496, (2007).
  • [38] Yazdi A. A., D’Angelo L., Omer N., Windiasti G., Lu X., Xu J., “Carbon nanotube modification of microbial fuel cell electrodes”, Biosens. Bioelectron., 85: 536–552, (2016).
  • [39] Zhuang Y., Yu, F., Ma, J., Chen, J., “Graphene as a template and structural scaffold for the synthesis of a 3D porous bio-adsorbent to remove antibiotics from water”, RSC Adv., 5: 27964-27969, (2015).
  • [40] Yuan H., He Z., “Graphene-modified electrodes for enhancing the performance of microbial fuel cells”, Nanoscale, 7: 7022-7029, (2015).
  • [41] Yaqoob A. A., Ibrahim M. N. M., Yaakop A. S., Umar K., Ahmad A., “Modified graphene oxide anode: a bioinspired waste material for bioremediation of Pb2+ with energy generation through microbial fuel cells”, Chem. Eng. J., 417: 128052, (2020).
  • [42] Wang H., Wang G., Ling Y., Qian F., Song Y., Lu X., Chen S., Tong Y., Li Y., “High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode”, Nanoscale, 5: 10283-10290, (2013).
  • [43] Qiao Y., Wu X. S., Ma C. X., He H., Li C. M., “A hierarchical porous graphene/nickel anode that simultaneously boosts the bio- and electro-catalysis for high-performance microbial fuel cells”, RSC Advances, 4: 21788-21793, (2014).
  • [44] Karthikeyan R., Krishnaraj N., Selvam A., Wong J. W-C., Lee, P. K. H., Leung, M. K. H., Berchmans, S., “Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts”, Bioresour. Technol., 217, 113-120, (2016).
  • [45] Khilari S., Pandit S., Das D., Pradhan D., “Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells”, Biosens. Bioelectron., 54: 534-540, (2014).
  • [46] Zhang C., Liang P., Yang X., Jiang Y., Bian Y., Chen C., Zhang X., Huang X., “Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell”, Biosens. Bioelectron., 81: 32-38, (2016).
  • [47] Wang Y., Li B., Zeng L., Cui D., Xiang X., Li W., “Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells”, Biosens. Bioelectron., 41: 582-588, (2013).
  • [48] Geetanjali, Rani R., Kumar S., “High-capacity polyaniline-coated molybdenum oxide composite as an effective catalyst for enhancing the electrochemical performance of the microbial fuel cell”, Int. J. Hydrogen Energy, 44: 16933-16943, (2019).
  • [49] Hummers W. S., Offeman R. E., “Preparation of graphitic oxide”, J. Am. Chem. Soc., 80: 1339, (1958).
  • [50] Chen X., Qu Z., Liu Z., Ren G., “Mechanism of oxidization of graphite to graphene oxide by the Hummers method”, ACS Omega, 7: 23503–23510, (2022).
  • [51] Zhang C., Lee B. J., Li H., Samdani J., Kang T. H., Yu J. S. “Catalytic mechanism of graphene-nickel interface dipole layer for binder free electrochemical sensor applications”, Commun. Chem., 1:94, (2018).
  • [52] Bonet F., Guery C., Guyomard D., Urbina R. H., Tekaia-Elhsissen K., Tarascon J. M., “Electrochemical reduction of noble metal species in ethylene glycol at platinum and glassy carbon rotating disk electrodes”, Solid State Ion., 126: 337-348, (1999).

Mikrobiyal Yakıt Hücresi Anotunda Kullanılmak Üzere İndirgenmiş Grafen Oksit Kaplı ve Molibden Yüklü Nikel Köpük Elektrot Sentezi

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1562930

Abstract

Mikrobiyal yakıt hücreleri (MYH), organik bileşiklerin bağları arasında bulunan kimyasal enerjiyi, aneorobik ortamda mikroorganizmaların katalitik reaksiyonları ile elektrik enerjisine dönüştürebilen kimyasal reaktörlerdir. Atık su arıtım sistemlerinin mevcut maliyetlerini azaltmak ve biyolojik parçalanabilir organik maddeler yönünden büyük bir enerji potansiyeli bulunan kentsel atıksuların hem değerlendirilmesi hem de çevreye olan kirletici etkilerinin azaltılması için bu sistemlerin geliştirilmesi önem arz etmektedir. MYH hücrelerinde anot elektrotu olarak kullanılan malzemenin yapısı, mikroorganizmaların anoda tutunmasını, substratın oksidasyonunu ve elektron transferini doğrudan etkilemektedir. Bu çalışmada MYH’de kullanılmak üzere üç boyutlu, makrogözenekli yapıda bulunan nikel köpük (NK), mikroorganizmaların yüzeyde tutunarak iyi bir elektriksel bağlantı sağlaması için indirgenmiş grafen oksit (rGO) ile kaplanmış ve elektron üretebilen bakteri türlerinin yüzeyde tutunmasını artırmak için en uygun molibden (Mo) yükleme yöntemi belirlenmeye çalışılmıştır. Ayrıca Mo yüklemelerinde, yükleme öncesi H2 gazı ile ısıl işlemin ve hidrotermal yöntemde indirgen olarak etilen glikol (EG) kullanımının etkileri araştırılmıştır. Çalışma sonucunda başlangıç çözeltisine EG eklemenin Mo yüklemesini artırdığı, H2 gazı geçirilmesinin ise yüzey morfolojisini bozduğu gözlemlenmiştir. Yapılan çalışma sonrası SEM görüntüleri ve EDS analizleri incelendiğinde en homojen yüzey morfolojisinin ve en yüksek verimin kütlece %84,39 oranında Mo içeren NK/rGO/Mo-E numunesinde olduğu gözlenmiştir.

Ethical Statement

Bu makalenin yazarları çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel bir izin gerektirmediğini beyan ederler.

Supporting Institution

Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FCD-2023-8721

Thanks

Bu çalışma Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FCD-2023-8721 kodlu proje ile desteklenmiştir.

References

  • [1] Kan Kaynar N., "Yenilenebilir enerji kaynaklarından güneş enerjisinin Amasya ilindeki potansiyeli", Bilge Int. J. Sci. Technol. Res., 4(2): 48–54, (2020).
  • [2] Cai T., Meng L., Chen G., Xi Y., Jiang N., Song J., Zheng S., Liu Y., Zhen G., Huang M., “Application of advanced anodes in microbial fuel cells for power generation: A review”, Chemosphere, 125985, (2020).
  • [3] Deniz Yakıncı Z., Kök M., “Yenilenebilir enerji ve toplum sağlığı”, İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksekokulu Dergisi, 5(1): 43–55, (2017).
  • [4] Dessie Y., Tadesse S., “Advancements in bioelectricity generation through nanomaterial-modified anode electrodes in microbial fuel cells”, Front. Nanotechnol., 4: 1–16, (2022).
  • [5] Erensoy A., Çek N., “Mikrobiyal yakıt hücrelerinde kullanılan saf kültür mikroorganizmaları ve genel özellikleri”, Eur. J. Sci. Technol., 18:109–117, (2020).
  • [6] Akçay G. H, Ar İ., “Investigation of domestic wastewater treatment and electricity generation using a two chambered microbial fuel cell with composite anode electrode”, Afyon Kocatepe Univ. J. Sci. Eng., 23(1): 177–185, (2023).
  • [7] Mohan Y., Manoj Muthu Kumar S., Das D., “Electricity generation using microbial fuel cells”, Int. J. Hydrogen Energy, 33(1): 423–426, (2008).
  • [8] Watanabe K., “Recent developments in microbial fuel cell technologies for sustainable bioenergy”, J. Biosci. Bioeng., 106(6): 528–536, (2008).
  • [9] Özcan E., “Mikrobiyal yakıt hücrelerinde membran ve işletme şartlarındaki değişimin güç üretimine etkisi”, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, (2013).
  • [10] Oh S. E, Logan B. E., “Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells”, Appl. Microbiol. Biotechnol., 70(2): 162–169, (2006).
  • [11] Zhang Y., “Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies”, Doktora Tezi, DTU Environment, Technical University of Denmark, (2012).
  • [12] Liu H., Logan B. E., “Electricity generation using an air-cathode single chamber microbial fuel cell (MFC) in the absence of a proton exchange membrane”, Environ. Sci. Technol., 38(1): 4040–4046, (2004).
  • [13] Ren Y., Chen J., Shi Y., Li X., Yang N., Wang X., “Anolyte recycling enhanced bioelectricity generation of the buffer-free single-chamber air-cathode microbial fuel cell”, Bioresour. Technol., 244: 1183–1187, (2017).
  • [14] Liu H., Cheng S., Logan B. E. “Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell”, Environ. Sci. Technol., 39(2): 658–662, (2005).
  • [15] Huang H., Cheng S., Li F., Mao Z., Lin Z., Cen K., “Enhancement of the denitrification activity by exoelectrogens in single-chamber air cathode microbial fuel cells”, Chemosphere, 225: 548–556, (2019).
  • [16] Larrosa-Guerrero A., Scott K., Head I. M., Mateo F., Ginesta A., Godinez C., “Effect of temperature on the performance of microbial fuel cells”, Fuel, 89(12): 3985–3994, (2010).
  • [17] Oyiwona G. E, Ogbonna J. C, Anyanwu C. U, Okabe S., “Electricity generation potential of poultry droppings wastewater in microbial fuel cell using rice husk charcoal electrodes”, Bioresour. Bioprocess., 5:13, (2018).
  • [18] Zhao W., Fu W., Chen S., Xiong H., Lan L., Jiang M., Patil S. A., Chen S., “High-capacitance bioanode circumvents bioelectrochemical reaction transition in the voltage-reversed serially-stacked air-cathode microbial fuel cell”, J. Power Sources, 468: 228402, (2020).
  • [19] He Z., Wagner N., Minteer S. D, Angenent L. T. “An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy”, Environ. Sci. Technol., 40(17): 5212–5217, (2006).
  • [20] He Z., Minteer S. D, Angenent L. T., “Electricity generation from artificial wastewater using an upflow microbial fuel cell”, Environ. Sci. Technol., 39(14): 5262–5267, (2005).
  • [21] Calli B., Mertoglu B., Roest K., Inanc B., “Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate”, Bioresour. Technol., 97(4): 641–647, (2006).
  • [22] Li H., Cao H., Li T., He Z., Zhao J., Zhang Y., Song H. -L., “Biofilm electrode reactor coupled manganese ore substrate up-flow microbial fuel cell-constructed wetland system: High removal efficiencies of antibiotic, zinc (II), and the corresponding antibiotic resistance genes”, J. Hazard. Mater., 460: 132394, (2023).
  • [23] Rabaey K., Clauwaert P., Aelterman P., Verstraete W., “Tubular microbial fuel cells for efficient electricity generation”, Environ. Sci. Technol., 39(20): 8077–8082, (2005).
  • [24] Karluvalı A., “Kompozit tubular elektrot kullanılan mikrobiyal yakıt hücresinde biyobozunur atıklardan elektrik enerjisi üretimi”, Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, (2016).
  • [25] Zuo Y., Cheng S., Call D. F., Logan B. E., “Scalable tubular membrane cathodes for microbial fuel cell applications”, ACS Natl. Meet. B. Abstr., 41(9): 3347–3353, (2007).
  • [26] Almatouq A., Ahmed M.E., Khajah M., Abdullah H., Al-Yaseen R., Al-Jumaa M., Al-Ajeel F., Shishter A., “Performance of tubular microbial fuel cells using different industrial wastewater”, J. Water Process Eng., 55: 104166, (2023).
  • [27] Tender L. M., Reimers C. E., Stecher H. A, Holmes D. E., Bond D. R., Lowy D. A., Pilobello K., Fertig S. J., Lovley D. R., “Harnessing microbially generated power on the seafloor”, Nat. Biotechnol., 20(8): 821–825, (2002).
  • [28] Lowy D. A, Tender L. M., Zeikus J. G., Park D. H., Lovley D. R., “Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials”, Biosens. Bioelectron., 21(11): 2058–2063, (2006).
  • [29] Babauta J. T., Hsu L., Atci E., Kagan J., Chadwick B., Beyenal H., “Multiple cathodic reaction mechanisms in seawater cathodic biofilms Operating in sediment microbial fuel cells”, ChemSusChem., 7(10): 2898–2906, (2014).
  • [30] Taşkan E., “Sediment tipi mikrobiyal yakıt hücresi kullanılarak arıtma çamurlarından elektrik üretimi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28(1): 15–21, (2016).
  • [31] Perchikov R., Cheliukanov M., Plekhanova Y., Tarasov S., Kharkova A., Butusov D., Arlyapov V., Nakamura H., Reshetilov A., “Microbial biofilms: Features of formation and potential for use in bioelectrochemical devices”, Biosensors, 14(6): 302, (2024).
  • [32] Nitisoravut R., Thanh C. N. D., Regmi R., “Microbial fuel cells: Advances in electrode modifications for improvement of system performance”, Int. J. Green Energy, 14: 712–723, (2017).
  • [33] Zou L., Qiao Y., Wu Z. Y., Wu X. S., Xie J. L., Yu S. H., Guo J., Li C. M., “Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells”, Adv. Energy Mater., 6(4): 1–6, (2016).
  • [34] Chong P., Erable B., Bergel A., “Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review”, Bioresour. Technol., 289: 121641, (2019).
  • [35] Feng Y., Yang Q., Wang X., Logan B. E., “Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells”, J. Power Sources, 195: 1841–1844, (2010).
  • [36] Logan B. E., Cheng S., Watson V., Estadt G., “Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells”, Environ. Sci. Technol., 41: 3341–3346, (2007).
  • [37] Cheng S., Logan B. E., “Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells”, Electrochem. Commun., 9: 492–496, (2007).
  • [38] Yazdi A. A., D’Angelo L., Omer N., Windiasti G., Lu X., Xu J., “Carbon nanotube modification of microbial fuel cell electrodes”, Biosens. Bioelectron., 85: 536–552, (2016).
  • [39] Zhuang Y., Yu, F., Ma, J., Chen, J., “Graphene as a template and structural scaffold for the synthesis of a 3D porous bio-adsorbent to remove antibiotics from water”, RSC Adv., 5: 27964-27969, (2015).
  • [40] Yuan H., He Z., “Graphene-modified electrodes for enhancing the performance of microbial fuel cells”, Nanoscale, 7: 7022-7029, (2015).
  • [41] Yaqoob A. A., Ibrahim M. N. M., Yaakop A. S., Umar K., Ahmad A., “Modified graphene oxide anode: a bioinspired waste material for bioremediation of Pb2+ with energy generation through microbial fuel cells”, Chem. Eng. J., 417: 128052, (2020).
  • [42] Wang H., Wang G., Ling Y., Qian F., Song Y., Lu X., Chen S., Tong Y., Li Y., “High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode”, Nanoscale, 5: 10283-10290, (2013).
  • [43] Qiao Y., Wu X. S., Ma C. X., He H., Li C. M., “A hierarchical porous graphene/nickel anode that simultaneously boosts the bio- and electro-catalysis for high-performance microbial fuel cells”, RSC Advances, 4: 21788-21793, (2014).
  • [44] Karthikeyan R., Krishnaraj N., Selvam A., Wong J. W-C., Lee, P. K. H., Leung, M. K. H., Berchmans, S., “Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts”, Bioresour. Technol., 217, 113-120, (2016).
  • [45] Khilari S., Pandit S., Das D., Pradhan D., “Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells”, Biosens. Bioelectron., 54: 534-540, (2014).
  • [46] Zhang C., Liang P., Yang X., Jiang Y., Bian Y., Chen C., Zhang X., Huang X., “Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell”, Biosens. Bioelectron., 81: 32-38, (2016).
  • [47] Wang Y., Li B., Zeng L., Cui D., Xiang X., Li W., “Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells”, Biosens. Bioelectron., 41: 582-588, (2013).
  • [48] Geetanjali, Rani R., Kumar S., “High-capacity polyaniline-coated molybdenum oxide composite as an effective catalyst for enhancing the electrochemical performance of the microbial fuel cell”, Int. J. Hydrogen Energy, 44: 16933-16943, (2019).
  • [49] Hummers W. S., Offeman R. E., “Preparation of graphitic oxide”, J. Am. Chem. Soc., 80: 1339, (1958).
  • [50] Chen X., Qu Z., Liu Z., Ren G., “Mechanism of oxidization of graphite to graphene oxide by the Hummers method”, ACS Omega, 7: 23503–23510, (2022).
  • [51] Zhang C., Lee B. J., Li H., Samdani J., Kang T. H., Yu J. S. “Catalytic mechanism of graphene-nickel interface dipole layer for binder free electrochemical sensor applications”, Commun. Chem., 1:94, (2018).
  • [52] Bonet F., Guery C., Guyomard D., Urbina R. H., Tekaia-Elhsissen K., Tarascon J. M., “Electrochemical reduction of noble metal species in ethylene glycol at platinum and glassy carbon rotating disk electrodes”, Solid State Ion., 126: 337-348, (1999).
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Materials Science and Technologies
Journal Section Research Article
Authors

Habib Akyazı 0000-0002-3512-0438

Çiğdem Güldür 0000-0002-4404-6882

Silver Güneş 0000-0001-7608-3779

Project Number FCD-2023-8721
Early Pub Date November 24, 2024
Publication Date
Submission Date October 7, 2024
Acceptance Date November 8, 2024
Published in Issue Year 2025 EARLY VIEW

Cite

APA Akyazı, H., Güldür, Ç., & Güneş, S. (2024). Mikrobiyal Yakıt Hücresi Anotunda Kullanılmak Üzere İndirgenmiş Grafen Oksit Kaplı ve Molibden Yüklü Nikel Köpük Elektrot Sentezi. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1562930
AMA Akyazı H, Güldür Ç, Güneş S. Mikrobiyal Yakıt Hücresi Anotunda Kullanılmak Üzere İndirgenmiş Grafen Oksit Kaplı ve Molibden Yüklü Nikel Köpük Elektrot Sentezi. Politeknik Dergisi. Published online November 1, 2024:1-1. doi:10.2339/politeknik.1562930
Chicago Akyazı, Habib, Çiğdem Güldür, and Silver Güneş. “Mikrobiyal Yakıt Hücresi Anotunda Kullanılmak Üzere İndirgenmiş Grafen Oksit Kaplı Ve Molibden Yüklü Nikel Köpük Elektrot Sentezi”. Politeknik Dergisi, November (November 2024), 1-1. https://doi.org/10.2339/politeknik.1562930.
EndNote Akyazı H, Güldür Ç, Güneş S (November 1, 2024) Mikrobiyal Yakıt Hücresi Anotunda Kullanılmak Üzere İndirgenmiş Grafen Oksit Kaplı ve Molibden Yüklü Nikel Köpük Elektrot Sentezi. Politeknik Dergisi 1–1.
IEEE H. Akyazı, Ç. Güldür, and S. Güneş, “Mikrobiyal Yakıt Hücresi Anotunda Kullanılmak Üzere İndirgenmiş Grafen Oksit Kaplı ve Molibden Yüklü Nikel Köpük Elektrot Sentezi”, Politeknik Dergisi, pp. 1–1, November 2024, doi: 10.2339/politeknik.1562930.
ISNAD Akyazı, Habib et al. “Mikrobiyal Yakıt Hücresi Anotunda Kullanılmak Üzere İndirgenmiş Grafen Oksit Kaplı Ve Molibden Yüklü Nikel Köpük Elektrot Sentezi”. Politeknik Dergisi. November 2024. 1-1. https://doi.org/10.2339/politeknik.1562930.
JAMA Akyazı H, Güldür Ç, Güneş S. Mikrobiyal Yakıt Hücresi Anotunda Kullanılmak Üzere İndirgenmiş Grafen Oksit Kaplı ve Molibden Yüklü Nikel Köpük Elektrot Sentezi. Politeknik Dergisi. 2024;:1–1.
MLA Akyazı, Habib et al. “Mikrobiyal Yakıt Hücresi Anotunda Kullanılmak Üzere İndirgenmiş Grafen Oksit Kaplı Ve Molibden Yüklü Nikel Köpük Elektrot Sentezi”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1562930.
Vancouver Akyazı H, Güldür Ç, Güneş S. Mikrobiyal Yakıt Hücresi Anotunda Kullanılmak Üzere İndirgenmiş Grafen Oksit Kaplı ve Molibden Yüklü Nikel Köpük Elektrot Sentezi. Politeknik Dergisi. 2024:1-.