Research Article
BibTex RIS Cite

Erbiyum Katkılı Fiber Yükselteç Modelinin Nümerik Analizi

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1602743

Abstract

Sanal/artırılmış gerçeklik, yapay zekâ, veri madenciliği, bulut hizmetleri ve video akışı gibi çeşitli yeni internet uygulamalarını desteklemek için optik iletim sisteminde kapasite artışına olan talep giderek artmaktadır. Son birkaç yılda, donanım seviyesindeki gelişmeler ve sosyal medya gibi teknolojiler yaygın şekilde kullanılmakta bu sebeple sistem kapasitesini teorik sınıra yaklaştırmaktadır. Bu bağlamda araştırmada öncelikle optik simülasyon programı yardımıyla EKFY tasarımı yapılarak sisteme sırasıyla 50mW, 100mW, 150mW pompa gücü verilerek Erbiyum katkılı optik fiber uzaklığına bağlı olarak optik çıkış gücü ve gürültü gücü elde edilmiştir. Sonrasında EKFY fiziksel yapısında, çeşitli uzunluklardaki Erbiyum katkılı optik fiber uzunlukları için sinyal gücü, pompa gücü ve gürültü faktörü denklemleri numerik olarak çözümlenmiştir. Son olarak simülasyon sonuçları ile bulunan nümerik sonuçlar karşılaştırılmış elde edilen sonuçlar görsellerle ve tablolarla sunulmuştur. Karşılaştırma sonuçları analiz edildiğinde büyük benzerlik elde edilmiştir. Bu bağlamda ileriki çalışmalarda, elde ettiğimiz sonuçlar fonksiyon şeklinde yazılarak optimizasyon denklemleri için kullanılabileceği düşünülmekte ve bu tür çalışmalara kaynak olacağı sonucuna varılmıştır.

Ethical Statement

Bu makale çalışmasında kullanılan materyal ve yöntemlerin etik kurul izni veya özel bir izin gerektirmediğini beyan ederiz.

References

  • [1] Yolcu V., Yücel M., Aydın D., “Solution of fiber Raman amplifier model using binary search equation-based adaptive artificial bee colony algorithm”. Optical Engineering, 62(2), 026105, (2023).
  • [2] Yıldırım, R., Hazer, A., “A New Approach to Increasing the Bandwidth of Fiber-Optic Communication Systems”, Politeknik Dergisi, 27, (3), 1141–1145, (2024).
  • [3] Yücel, M., Yiğit, E., “İki Aşamalı Üç Geçişli EKFY Tasarımı ve EKFY Parametrelerinin Optimizasyonu”, Gazi Üniversitesi Fen Bilimleri Dergisi, Part C: Tasarım Ve Teknoloji, 8(2), (2020).
  • [4] Yolcu V., Yücel M., “Raman Yükselteç Modeli Üzerine Bir Çalışma”. Politeknik Dergisi, 27(4), 1399-1407, (2024).
  • [5] Yıldız E., “GaSe yarıiletken kristallerine bor katkılamanın optik sınırlama ve iki foton soğurma özellikleri üzerine etkileri”. Politeknik Dergisi, 26(1), 161-168, (2023).
  • [6] Mahad, F. D., Supa’at A. S. and Sahmah B. M., “EDFA gain optimization for WDM system”, In 2017 International Conference on Communication and Signal Processing (ICCSP) (pp. 0087-0090). (2009).
  • [7] Yichen L., et al., “Modeling EDFA gain: approaches and challenges”. Photonics, Vol. 8, No:10, MDPI, (2021).
  • [8] Talam C., David B., et al. “EDFA gain flattening using fiber Bragg gratings employing different host materials.”, Optical and Quantum Electronics, 52, 1-17, (2020).
  • [9] Kipriksiz S, Yücel M., “Düzgün Olmayan Yapılarda Fiber Bragg Izgara Sensör Tasarımı ve Uygulaması”, Politeknik Dergisi, 24(3):843-51, (2021).
  • [10] Aly, M. H., et al. “A Comprehensive Study on EDFA Gain Flattening for WDM Transmission using Cascaded Fiber Bragg Gratings.”, Journal of Advanced Research in Applied Sciences and Engineering Technology, 40.1, 96-108, (2024).
  • [11] Gulzar, A., Qazi, G., “Numerical investigations of double pass, highly selective FBG based DFB-EDFA system for enhanced gain and ASE-mitigation.”, Optical and Quantum Electronics, 56.11, 1802, (2024).
  • [12] Burunkaya M. and Yücel M., "Measurement and control of an incubator temperature by using conventional methods and fiber Bragg grating (FBG) based temperature sensors", Journal of Medical Systems, vol.44, (2020).
  • [13] Cui, L., et al. "Integrated source of telecom-band photon-pairs based on high index silica glass spiral waveguides", Optical Fiber Communications Conference and Exhibition (OFC). IEEE, (2023).
  • [14] Aradi, H. E., et al. "All-optical wavelength reuse for meter reading application using EDFA saturation and DFB laser." Optik 3(12), 171946, (2024).
  • [15] Sadik, S. A., Durak F. E., and Altuncu A., "Widely tunable erbium doped fiber ring laser based on loop and double-pass EDFA design." Optics & Laser Technology, 124, 105979, (2020).
  • [16] T. F. Al-Mashhadani et al., "Widely triple Brillouin frequency shift multiwavelength Brillouin erbium fiber laser," Optical and Quantum Electronics, vol.52, no.4, (2020).
  • [17] Yucel M., and Aslan Z., "The noise figure and gain improvement of double‐pass C‐band EDFA." Microwave and Optical Technology Letters 55.11, 2525-2528, (2013).
  • [18] Dincer A. and Yücel M., "Modeling and optimizations of triple-pass TDFAs for next-generation fiber optical communication systems," Journal of Optoelectronics and Advanced Materials, no.5-6, pp.219-227, (2024). [19] Yigit E. and Yücel M., "Three-stage six-pass EDFA preamplifier design and EDFA parameters' optimization," Optical and Quantum Electronics, vol.54, no.1, (2022).
  • [20] Yücel M., and Göktaş H. H., "Examination of temperature dependence of double pass l band erbium doped fiber amplifier," Journal of The Faculty of Engineering and Architecture of Gazi University, Vol.27, No.2, Pp.237-243, (2012).
  • [21] Gürkaynak I. A. et al., "An efficient wide flatness gain bandwidth with parallel hybrid fiber amplifier, "Microwave and Optical Technology Letters, vol.64, no.2, pp.251-258, (2022).
  • [22] Gürkaynak I. A. et al., "Widely flatness gain bandwidth with double pass parallel hybrid fiber amplifier," Optical and Quantum Electronics, vol.53, no.7, (2021).
  • [23] Ali, M. H., et al. "Pump power optimization for hybrid fiber amplifier utilizing second order stimulated Raman scattering." Optical and Quantum Electronics, 52.6 (2020).
  • [24] Gürkaynak, Irfan Alp, et al. "An efficient wide flatness gain bandwidth with parallel hybrid fiber amplifier." Microwave and Optical Technology Letters, 64.2, 251-258, (2022).
  • [25] Asha, A. and Dahiya S., "Optimization of high frequency radio over fiber system using cascaded amplifier and dispersion compensation fiber." Journal of Optics, 52.3, 1552-1565, (2023).
  • [26] Miglani, R., et al. "Gain optimization of 100× 40 Gbps high capacity DWDM fiber optical link using hybrid amplification techniques." Journal of Optics, 49, 323-331, (2020).
  • [27] Yankov M., P., Uiara C., and Rose F., “Power evolution modeling and optimization of fiber optic communication systems with EDFA repeaters”. Journal of Lightwave Technology, 39.10. (2021).
  • [28] Pradhan D., and Abhilash M., “Design optimization of EDFA for 16× 10 Gbps data rate DWDM system using different pumping configurations”. Wireless Personal Communications, 106, 2079-2086, (2019).
  • [29] Khadir, A., A., Baydaa F. D. and Xiquan F., "Achieving optical fiber communication experiments by optisystem." International Journal of Computer Science and Mobile Computing, 3.6, 42-53, (2014).
  • [30] Othman M. A., et al. "Erbium doped fiber amplifier (EDFA) for C-band optical communication system." International Journal of Engineering & Technology IJET-IJENS, 12.4, 48-50, (2012).
  • [31] Yolcu V., Yücel M. & Aydın D., “Kazancı düzleştirilmiş fiber Raman yükselteç modelinin ikili arama denklemli adaptif yapay arı kolonisi (İADAYAK) algoritması ile optimizasyonu”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39 (1), 29-38, (2023).

NUMERICAL ANALYSIS OF ERBIUM-DOPED FIBER AMPLIFIER MODEL

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1602743

Abstract

Nowadays, the demand for increasing capacity in optical transmission systems is growing to support various new internet applications such as virtual/augmented reality, artificial intelligence, data mining, cloud services, and video streaming. Advances in hardware technologies and the widespread use of technologies like social media have pushed system capacity closer to its theoretical limits. In this study, an Erbium-Doped Fiber Amplifier (EDFA) design was implemented using an optical simulation program. Signal and noise powers at different pump powers (50mW, 100mW, 150mW) were obtained depending on the length of the erbium-doped optical fiber. Subsequently, the physical structure of the EDFA was examined, and the equations for signal power, pump power, and noise figure were solved numerically for various fiber lengths. The results obtained from simulations and numerical methods were compared, showing a strong similarity. It is anticipated that the results of this study can be used to create functional expressions for optimization equations and serve as a resource for future research.

Ethical Statement

We declare that the materials and methods used in this article study do not require ethical committee approval or a special permission.

References

  • [1] Yolcu V., Yücel M., Aydın D., “Solution of fiber Raman amplifier model using binary search equation-based adaptive artificial bee colony algorithm”. Optical Engineering, 62(2), 026105, (2023).
  • [2] Yıldırım, R., Hazer, A., “A New Approach to Increasing the Bandwidth of Fiber-Optic Communication Systems”, Politeknik Dergisi, 27, (3), 1141–1145, (2024).
  • [3] Yücel, M., Yiğit, E., “İki Aşamalı Üç Geçişli EKFY Tasarımı ve EKFY Parametrelerinin Optimizasyonu”, Gazi Üniversitesi Fen Bilimleri Dergisi, Part C: Tasarım Ve Teknoloji, 8(2), (2020).
  • [4] Yolcu V., Yücel M., “Raman Yükselteç Modeli Üzerine Bir Çalışma”. Politeknik Dergisi, 27(4), 1399-1407, (2024).
  • [5] Yıldız E., “GaSe yarıiletken kristallerine bor katkılamanın optik sınırlama ve iki foton soğurma özellikleri üzerine etkileri”. Politeknik Dergisi, 26(1), 161-168, (2023).
  • [6] Mahad, F. D., Supa’at A. S. and Sahmah B. M., “EDFA gain optimization for WDM system”, In 2017 International Conference on Communication and Signal Processing (ICCSP) (pp. 0087-0090). (2009).
  • [7] Yichen L., et al., “Modeling EDFA gain: approaches and challenges”. Photonics, Vol. 8, No:10, MDPI, (2021).
  • [8] Talam C., David B., et al. “EDFA gain flattening using fiber Bragg gratings employing different host materials.”, Optical and Quantum Electronics, 52, 1-17, (2020).
  • [9] Kipriksiz S, Yücel M., “Düzgün Olmayan Yapılarda Fiber Bragg Izgara Sensör Tasarımı ve Uygulaması”, Politeknik Dergisi, 24(3):843-51, (2021).
  • [10] Aly, M. H., et al. “A Comprehensive Study on EDFA Gain Flattening for WDM Transmission using Cascaded Fiber Bragg Gratings.”, Journal of Advanced Research in Applied Sciences and Engineering Technology, 40.1, 96-108, (2024).
  • [11] Gulzar, A., Qazi, G., “Numerical investigations of double pass, highly selective FBG based DFB-EDFA system for enhanced gain and ASE-mitigation.”, Optical and Quantum Electronics, 56.11, 1802, (2024).
  • [12] Burunkaya M. and Yücel M., "Measurement and control of an incubator temperature by using conventional methods and fiber Bragg grating (FBG) based temperature sensors", Journal of Medical Systems, vol.44, (2020).
  • [13] Cui, L., et al. "Integrated source of telecom-band photon-pairs based on high index silica glass spiral waveguides", Optical Fiber Communications Conference and Exhibition (OFC). IEEE, (2023).
  • [14] Aradi, H. E., et al. "All-optical wavelength reuse for meter reading application using EDFA saturation and DFB laser." Optik 3(12), 171946, (2024).
  • [15] Sadik, S. A., Durak F. E., and Altuncu A., "Widely tunable erbium doped fiber ring laser based on loop and double-pass EDFA design." Optics & Laser Technology, 124, 105979, (2020).
  • [16] T. F. Al-Mashhadani et al., "Widely triple Brillouin frequency shift multiwavelength Brillouin erbium fiber laser," Optical and Quantum Electronics, vol.52, no.4, (2020).
  • [17] Yucel M., and Aslan Z., "The noise figure and gain improvement of double‐pass C‐band EDFA." Microwave and Optical Technology Letters 55.11, 2525-2528, (2013).
  • [18] Dincer A. and Yücel M., "Modeling and optimizations of triple-pass TDFAs for next-generation fiber optical communication systems," Journal of Optoelectronics and Advanced Materials, no.5-6, pp.219-227, (2024). [19] Yigit E. and Yücel M., "Three-stage six-pass EDFA preamplifier design and EDFA parameters' optimization," Optical and Quantum Electronics, vol.54, no.1, (2022).
  • [20] Yücel M., and Göktaş H. H., "Examination of temperature dependence of double pass l band erbium doped fiber amplifier," Journal of The Faculty of Engineering and Architecture of Gazi University, Vol.27, No.2, Pp.237-243, (2012).
  • [21] Gürkaynak I. A. et al., "An efficient wide flatness gain bandwidth with parallel hybrid fiber amplifier, "Microwave and Optical Technology Letters, vol.64, no.2, pp.251-258, (2022).
  • [22] Gürkaynak I. A. et al., "Widely flatness gain bandwidth with double pass parallel hybrid fiber amplifier," Optical and Quantum Electronics, vol.53, no.7, (2021).
  • [23] Ali, M. H., et al. "Pump power optimization for hybrid fiber amplifier utilizing second order stimulated Raman scattering." Optical and Quantum Electronics, 52.6 (2020).
  • [24] Gürkaynak, Irfan Alp, et al. "An efficient wide flatness gain bandwidth with parallel hybrid fiber amplifier." Microwave and Optical Technology Letters, 64.2, 251-258, (2022).
  • [25] Asha, A. and Dahiya S., "Optimization of high frequency radio over fiber system using cascaded amplifier and dispersion compensation fiber." Journal of Optics, 52.3, 1552-1565, (2023).
  • [26] Miglani, R., et al. "Gain optimization of 100× 40 Gbps high capacity DWDM fiber optical link using hybrid amplification techniques." Journal of Optics, 49, 323-331, (2020).
  • [27] Yankov M., P., Uiara C., and Rose F., “Power evolution modeling and optimization of fiber optic communication systems with EDFA repeaters”. Journal of Lightwave Technology, 39.10. (2021).
  • [28] Pradhan D., and Abhilash M., “Design optimization of EDFA for 16× 10 Gbps data rate DWDM system using different pumping configurations”. Wireless Personal Communications, 106, 2079-2086, (2019).
  • [29] Khadir, A., A., Baydaa F. D. and Xiquan F., "Achieving optical fiber communication experiments by optisystem." International Journal of Computer Science and Mobile Computing, 3.6, 42-53, (2014).
  • [30] Othman M. A., et al. "Erbium doped fiber amplifier (EDFA) for C-band optical communication system." International Journal of Engineering & Technology IJET-IJENS, 12.4, 48-50, (2012).
  • [31] Yolcu V., Yücel M. & Aydın D., “Kazancı düzleştirilmiş fiber Raman yükselteç modelinin ikili arama denklemli adaptif yapay arı kolonisi (İADAYAK) algoritması ile optimizasyonu”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39 (1), 29-38, (2023).
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Photonics, Optoelectronics and Optical Communications
Journal Section Research Article
Authors

Vehbi Yolcu 0000-0001-6052-4218

Murat Yücel 0000-0002-0349-4013

Early Pub Date February 11, 2025
Publication Date
Submission Date December 16, 2024
Acceptance Date December 31, 2024
Published in Issue Year 2025 EARLY VIEW

Cite

APA Yolcu, V., & Yücel, M. (2025). Erbiyum Katkılı Fiber Yükselteç Modelinin Nümerik Analizi. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1602743
AMA Yolcu V, Yücel M. Erbiyum Katkılı Fiber Yükselteç Modelinin Nümerik Analizi. Politeknik Dergisi. Published online February 1, 2025:1-1. doi:10.2339/politeknik.1602743
Chicago Yolcu, Vehbi, and Murat Yücel. “Erbiyum Katkılı Fiber Yükselteç Modelinin Nümerik Analizi”. Politeknik Dergisi, February (February 2025), 1-1. https://doi.org/10.2339/politeknik.1602743.
EndNote Yolcu V, Yücel M (February 1, 2025) Erbiyum Katkılı Fiber Yükselteç Modelinin Nümerik Analizi. Politeknik Dergisi 1–1.
IEEE V. Yolcu and M. Yücel, “Erbiyum Katkılı Fiber Yükselteç Modelinin Nümerik Analizi”, Politeknik Dergisi, pp. 1–1, February 2025, doi: 10.2339/politeknik.1602743.
ISNAD Yolcu, Vehbi - Yücel, Murat. “Erbiyum Katkılı Fiber Yükselteç Modelinin Nümerik Analizi”. Politeknik Dergisi. February 2025. 1-1. https://doi.org/10.2339/politeknik.1602743.
JAMA Yolcu V, Yücel M. Erbiyum Katkılı Fiber Yükselteç Modelinin Nümerik Analizi. Politeknik Dergisi. 2025;:1–1.
MLA Yolcu, Vehbi and Murat Yücel. “Erbiyum Katkılı Fiber Yükselteç Modelinin Nümerik Analizi”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1602743.
Vancouver Yolcu V, Yücel M. Erbiyum Katkılı Fiber Yükselteç Modelinin Nümerik Analizi. Politeknik Dergisi. 2025:1-.