An In-Depth Study on the Impact of Test Parameters on the Erichsen Index and Punch Force
Year 2025,
EARLY VIEW, 1 - 1
Fatih Civelek
,
Ahmet Özdemir
Abstract
In this paper, the Erichsen index (EI) values of the DC04 steel sheets were obtained both experimentally and through finite element analysis. The influences of punch size, punch speed, and thickness level of the sheet on the punch force, EI and fracture strains were examined. The design of the experiments was created using the Taguchi method, and the influences of the factors on the EI value were detected numerically with an analysis of variance (ANOVA). It was observed that the most effective parameter on the EI is the punch diameter. Additionally, it was noticed that the fracture strain and the Erichsen index increased with higher levels of thickness, and the punch speed showed no appreciable impact on the EI value. It was found that as the punch diameter decreased, the impact of sheet thickness on ES and fracture strain increased. The punch force increases almost linearly with both the punch diameter and sheet thickness. The effective strains at the onset of crack formation were calculated mathematically, and simulations were conducted based on these data. The simulation results of the Erichsen tests show strong consistency with the experimental findings, with the Mean Absolute Percentage Error not exceeding 3.5%.
Ethical Statement
The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.
Supporting Institution
Gazi University Scientific Research Projects Coordination Unit
Project Number
FDK-2023-8497
Thanks
The authors would like to express their gratitude to the Gazi University Scientific Research Projects Coordination Unit for supporting this study under project number FDK-2023-8497.
References
- [1] Mulay A., Ben B. S., Ismail S., Kocanda A. and Jasiński C., ‘’Performance evaluation of high-speed incremental sheet forming technology for AA5754 H22 aluminum and DC04 steel sheets’’, Archives of Civil and Mechanical Engineering, 18: 1275-1287, (2018).
- [2] Gürün H. and Karaağaç İ., ‘’The experimental investigation of effects of multiple parameters on the formability of the DC01 sheet metal’’, Strojniski Vestnik-Journal Of Mechanical Engineering, 61(11): 651-662, (2015).
- [3] Trzepieciński T., Szewczyk M. and Szwajka K., ‘’The use of non-edible green oils to lubricate DC04 steel sheets in sheet metal forming process’’, Lubricants, 10(9): 210, (2022).
- [4] Oh K. S., Oh K. H., Jang J. H., Kim D. J. and Han K. S., ‘’Design and analysis of New Test Method for evaluation of Sheet Metal formability’’, Journal of Materials Processing Technology, 211(4): 695-707, (2011).
- [5] Jahromi S. A. J., Nazarboland A., Mansouri E. and Abbasi S., ‘’Investigation of formability of low carbon steel sheets by forming limit diagrams’’, Iranian Journal of Science & Technology, Transaction B: Engineering, 30: 377-385, (2006).
- [6] Talapatra A., Choudhary V. R., Malhotra K., Vyas M., Jamal A. and Singhi M. K., ‘’Formability Characteristics of Different Sheet Metals By Erichsen Cupping Testing With NDT Methods’’, i-manager's Journal on Material Science, 1(1): 14-18, (2013).
- [7] Kocańda A. and Jasiński C.,‘’Extended evaluation of Erichsen cupping test results by means of laser speckle’’, Archives of Civil and Mechanical Engineering, 16(2): 211-216, (2016).
- [8] Zheng B., Gao X., Li M., Deng T., Huang Z., Zhou H. and Li D., ‘’Formability and Failure Mechanisms of Woven CF/PEEK Composite Sheet in Solid-State Thermoforming’’, Polymers, 11(6): 966, (2019).
- [9] Luo X., Liu H., Kang L., Lin J., Liu Y., Zhang D., Li D. and Chen D., ‘’Stretch Formability of an AZ61 Alloy Plate Prepared by Multi-Pass Friction Stir Processing’’, Materials, 14(12): 3168, (2021).
- [10] Liu W., Zhang M., Li J., Wu J., Meng Z. and Huang S., ‘’Formability of SS304 stainless steel foil at elevated strain-rate’’, Journal of Materials Research and Technology, 26: 7471-7482, (2023).
- [11] Liu R., Sun L., Wang X., Lin L., Zhang L. and Lin J., ‘’Strain rate effect on forming limit diagram for advanced high strength steels’’, SAE International Journal of Materials and Manufacturing, 7(3): 583-587, (2014).
- [12] Hamada A.S., Kisko A., Khosravifard A., Hassan M. A., Karjalainen L. P. and Porter D., ‘’Ductility and formability of three high-Mn TWIP steels in quasi-static and high-speed tensile and Erichsen tests’’, Materials Science and Engineering: A, 712: 255-265, (2018).
- [13] Tajally M. and Emadoddin E., ‘’Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets’’, Materials & Design, 32(3): 1594-1599, (2011).
- [14] Sudarsan C., Banker K. H., Hazra S., Bhagat R. and Panda S. K., ‘’Experimental investigations on forming limit diagram of ultra thin SS 304 steel: effect of circular grid size, sheet orientation, punch size and deformation speed’’, Advances in Materials and Processing Technologies, 5(1): 25-38, (2019).
- [15] Cho S. M., Kim H. D., Park C. D. and Chung W. J., ‘’Effect of Strain Rate and Friction on Formability According to Major Deformation Modes in Sheet Metal Forming’’, steel research international, 94(2): 2200255, (2023).
- [16] Söhngen B. and Willner K., ‘’Parameter identification of strain rate dependent hardening for sheet metals’’, Proceedings in Applied Mathematics and Mechanics, 19(1): e201900339, (2019).
- [17] Reddy M. R. N., Theja M. S. and Tilak M. G., ‘’Modified Erichsen Cupping Test for Copper, Brass, Aluminium and Stainless Steel’’, The SIJ Transactions on Industrial, Financial & Business Management, 01(02): 52-57, (2013).
- [18] Ramadass R., Sambasivam S. and Nagaraj V. V., ‘’Formability Studies on Titanium Grade 2 Sheet Using Erichsen Cupping Test’’, International Journal of Mechanical Engineering, 6(3): 667-675, (2021).
- [19] Timurkutluk B., Toros S., Onbilgin S. and Korkmaz H. G., ‘’Determination of formability characteristics of Crofer 22 APU sheets as interconnector for solid oxide fuel cells’’, International Journal of Hydrogen Energy, 43(31): 14638-14647, (2018).
- [20] Aydin M., Wu X., Cetinkaya K., Yasar M. and Kadi I., ‘’Application of digital image correlation technique to Erichsen cupping test’’, Engineering science and technology, an international journal, 21(4): 760-768, (2018).
- [21] Jasiński C., Kocańda A., Morawiński Ł. and Świłło S., ‘’A new approach to experimental testing of sheet metal formability for automotive industry’’, Archives of Metallurgy and Materials, 64(4): 1231-1238, (2019).
- [22] Kamikawa N. and Morino H., ‘’Quantitative Analysis of Load–Displacement Curves in Erichsen Cupping Test for Low Carbon Steel Sheet’’, Metallurgical and Materials Transactions A, 50(11): 5023-5037, (2019).
- [23] Çakış Y., Özdemir A., Şeker U. and Çiftçi İ., ‘’1050 Sac Metal Malzemenin Çekilebilirliğinin İncelenmesil’’, Politeknik Dergisi, 26(2):1001-1010, (2023).
- [24] Erdemir F. and Ozkan T. M., “Application of taguchi method for optimization of design parameters ın enhancement the robust of “c” type snap-fits”, Politeknik Dergisi, 25(3): 1385-1395, (2022).
- [25] Kahraman H., Cesur İ., Eren B. and Çoban A., “Biyodizel yakıtının tribolojik özelliklerinin yapay sinir ağı ve taguchi yaklaşımı ile optimizasyonu”, Politeknik Dergisi, 26(4): 1543-1553, (2023).
- [26] Narooei K. and Karimi Taheri A., ‘’A study on sheet formability by a stretch-forming process using assumed strain FEM’’, Journal of Engineering Mathematics, 65: 311-324, (2009).
- [27] Chakrabarty J., ‘’A theory of stretch forming over hemispherical punch heads’’, International Journal of Mechanical Sciences, 12(4): 315-325, (1970).
- [28] Reis L. C., Oliveira M. C., Santos A. D., Fernandes J. V., ‘’On the determination of the work hardening curve using the bulge test’’, International Journal of Mechanical Sciences, 105: 158-181, (2016).
- [29] Pernia-Espinoza A., Diegelmann V., Escribano-Garcia R., Fernandez-Ceniceros J. and Martinez-de-Pison F. J., ‘’A novel hybrid strip finishing process to improve mechanical properties and reduce energy consumption’’, International Journal of Material Forming, 12: 27-43, (2019).
- [30] Burdek M., ‘’Physical Modeling of the Steel Sheet Topography in Skin Pass Rolling and Its Influence on Susceptibility of Sheets to Deep Drawing’’, steel research international, 87(4): 456-464, (2016).
- [31] Fictorie E., Van den Boogaard A. H., Atzema E. H., ‘’Influence of punch radius in a Nakazima test for mild steel and aluminium’’, International Journal of Material Forming, 3: 1179-1182, (2010).
- [32] Tharrett M. R. and Stoughton T.B., ‘’Stretch-bend forming limits of 1008 AK steel’’, SAE Technical Paper, 2003-01-1157, (2003).
Test Parametrelerinin Erichsen Sabiti ve Zımba Kuvvetine Etkisinin Derinlemesine İncelenmesi
Year 2025,
EARLY VIEW, 1 - 1
Fatih Civelek
,
Ahmet Özdemir
Abstract
Bu makalede, DC04 çelik sacların Erichsen Sabiti (ES) değerleri hem deneysel yöntemle hem de sonlu elemanlar analizi ile elde edilmiştir. Zımba çapı, zımba hızı ve sac kalınlığının zımba kuvvetine, ES ve kırılma gerinimi üzerine etkileri incelenmiştir. Deneylerin tasarımı Taguchi yöntemi kullanılarak oluşturulmuş ve faktörlerin ES değeri üzerindeki etkileri varyans analizi (ANOVA) ile sayısal olarak tespit edilmiştir. ES değerini etkileyen en önemli parametrenin zımba çapı olduğu görülmüştür. Ayrıca, kırılma geriniminin ve Erichsen değerlerinin sacın kalınlaşmasıyla arttığı ve zımba hızının ES değerine önemli bir etkisinin olmadığı görülmüştür. Sac kalınlığının ES ve kırılma gerinimi üzerine etkisinin zımba çapının küçülmesiyle arttığı tespit edilmiştir. Zımba kuvvetinin hem zımba çapı hem de sac kalınlığıyla neredeyse lineer olarak arttığı gözlemlenmiştir. Çatlak oluşumu başlangıcındaki efektif gerinimler matematiksel olarak hesaplanmış ve bu veriler yardımıyla simülasyonlar gerçekleştirilmiştir. Erichsen testlerinin simülasyon sonuçları deneysel bulgularla güçlü bir tutarlılık göstermiştir ve Ortalama Mutlak Yüzde Hata %3,5'i geçmemektedir.
Project Number
FDK-2023-8497
References
- [1] Mulay A., Ben B. S., Ismail S., Kocanda A. and Jasiński C., ‘’Performance evaluation of high-speed incremental sheet forming technology for AA5754 H22 aluminum and DC04 steel sheets’’, Archives of Civil and Mechanical Engineering, 18: 1275-1287, (2018).
- [2] Gürün H. and Karaağaç İ., ‘’The experimental investigation of effects of multiple parameters on the formability of the DC01 sheet metal’’, Strojniski Vestnik-Journal Of Mechanical Engineering, 61(11): 651-662, (2015).
- [3] Trzepieciński T., Szewczyk M. and Szwajka K., ‘’The use of non-edible green oils to lubricate DC04 steel sheets in sheet metal forming process’’, Lubricants, 10(9): 210, (2022).
- [4] Oh K. S., Oh K. H., Jang J. H., Kim D. J. and Han K. S., ‘’Design and analysis of New Test Method for evaluation of Sheet Metal formability’’, Journal of Materials Processing Technology, 211(4): 695-707, (2011).
- [5] Jahromi S. A. J., Nazarboland A., Mansouri E. and Abbasi S., ‘’Investigation of formability of low carbon steel sheets by forming limit diagrams’’, Iranian Journal of Science & Technology, Transaction B: Engineering, 30: 377-385, (2006).
- [6] Talapatra A., Choudhary V. R., Malhotra K., Vyas M., Jamal A. and Singhi M. K., ‘’Formability Characteristics of Different Sheet Metals By Erichsen Cupping Testing With NDT Methods’’, i-manager's Journal on Material Science, 1(1): 14-18, (2013).
- [7] Kocańda A. and Jasiński C.,‘’Extended evaluation of Erichsen cupping test results by means of laser speckle’’, Archives of Civil and Mechanical Engineering, 16(2): 211-216, (2016).
- [8] Zheng B., Gao X., Li M., Deng T., Huang Z., Zhou H. and Li D., ‘’Formability and Failure Mechanisms of Woven CF/PEEK Composite Sheet in Solid-State Thermoforming’’, Polymers, 11(6): 966, (2019).
- [9] Luo X., Liu H., Kang L., Lin J., Liu Y., Zhang D., Li D. and Chen D., ‘’Stretch Formability of an AZ61 Alloy Plate Prepared by Multi-Pass Friction Stir Processing’’, Materials, 14(12): 3168, (2021).
- [10] Liu W., Zhang M., Li J., Wu J., Meng Z. and Huang S., ‘’Formability of SS304 stainless steel foil at elevated strain-rate’’, Journal of Materials Research and Technology, 26: 7471-7482, (2023).
- [11] Liu R., Sun L., Wang X., Lin L., Zhang L. and Lin J., ‘’Strain rate effect on forming limit diagram for advanced high strength steels’’, SAE International Journal of Materials and Manufacturing, 7(3): 583-587, (2014).
- [12] Hamada A.S., Kisko A., Khosravifard A., Hassan M. A., Karjalainen L. P. and Porter D., ‘’Ductility and formability of three high-Mn TWIP steels in quasi-static and high-speed tensile and Erichsen tests’’, Materials Science and Engineering: A, 712: 255-265, (2018).
- [13] Tajally M. and Emadoddin E., ‘’Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets’’, Materials & Design, 32(3): 1594-1599, (2011).
- [14] Sudarsan C., Banker K. H., Hazra S., Bhagat R. and Panda S. K., ‘’Experimental investigations on forming limit diagram of ultra thin SS 304 steel: effect of circular grid size, sheet orientation, punch size and deformation speed’’, Advances in Materials and Processing Technologies, 5(1): 25-38, (2019).
- [15] Cho S. M., Kim H. D., Park C. D. and Chung W. J., ‘’Effect of Strain Rate and Friction on Formability According to Major Deformation Modes in Sheet Metal Forming’’, steel research international, 94(2): 2200255, (2023).
- [16] Söhngen B. and Willner K., ‘’Parameter identification of strain rate dependent hardening for sheet metals’’, Proceedings in Applied Mathematics and Mechanics, 19(1): e201900339, (2019).
- [17] Reddy M. R. N., Theja M. S. and Tilak M. G., ‘’Modified Erichsen Cupping Test for Copper, Brass, Aluminium and Stainless Steel’’, The SIJ Transactions on Industrial, Financial & Business Management, 01(02): 52-57, (2013).
- [18] Ramadass R., Sambasivam S. and Nagaraj V. V., ‘’Formability Studies on Titanium Grade 2 Sheet Using Erichsen Cupping Test’’, International Journal of Mechanical Engineering, 6(3): 667-675, (2021).
- [19] Timurkutluk B., Toros S., Onbilgin S. and Korkmaz H. G., ‘’Determination of formability characteristics of Crofer 22 APU sheets as interconnector for solid oxide fuel cells’’, International Journal of Hydrogen Energy, 43(31): 14638-14647, (2018).
- [20] Aydin M., Wu X., Cetinkaya K., Yasar M. and Kadi I., ‘’Application of digital image correlation technique to Erichsen cupping test’’, Engineering science and technology, an international journal, 21(4): 760-768, (2018).
- [21] Jasiński C., Kocańda A., Morawiński Ł. and Świłło S., ‘’A new approach to experimental testing of sheet metal formability for automotive industry’’, Archives of Metallurgy and Materials, 64(4): 1231-1238, (2019).
- [22] Kamikawa N. and Morino H., ‘’Quantitative Analysis of Load–Displacement Curves in Erichsen Cupping Test for Low Carbon Steel Sheet’’, Metallurgical and Materials Transactions A, 50(11): 5023-5037, (2019).
- [23] Çakış Y., Özdemir A., Şeker U. and Çiftçi İ., ‘’1050 Sac Metal Malzemenin Çekilebilirliğinin İncelenmesil’’, Politeknik Dergisi, 26(2):1001-1010, (2023).
- [24] Erdemir F. and Ozkan T. M., “Application of taguchi method for optimization of design parameters ın enhancement the robust of “c” type snap-fits”, Politeknik Dergisi, 25(3): 1385-1395, (2022).
- [25] Kahraman H., Cesur İ., Eren B. and Çoban A., “Biyodizel yakıtının tribolojik özelliklerinin yapay sinir ağı ve taguchi yaklaşımı ile optimizasyonu”, Politeknik Dergisi, 26(4): 1543-1553, (2023).
- [26] Narooei K. and Karimi Taheri A., ‘’A study on sheet formability by a stretch-forming process using assumed strain FEM’’, Journal of Engineering Mathematics, 65: 311-324, (2009).
- [27] Chakrabarty J., ‘’A theory of stretch forming over hemispherical punch heads’’, International Journal of Mechanical Sciences, 12(4): 315-325, (1970).
- [28] Reis L. C., Oliveira M. C., Santos A. D., Fernandes J. V., ‘’On the determination of the work hardening curve using the bulge test’’, International Journal of Mechanical Sciences, 105: 158-181, (2016).
- [29] Pernia-Espinoza A., Diegelmann V., Escribano-Garcia R., Fernandez-Ceniceros J. and Martinez-de-Pison F. J., ‘’A novel hybrid strip finishing process to improve mechanical properties and reduce energy consumption’’, International Journal of Material Forming, 12: 27-43, (2019).
- [30] Burdek M., ‘’Physical Modeling of the Steel Sheet Topography in Skin Pass Rolling and Its Influence on Susceptibility of Sheets to Deep Drawing’’, steel research international, 87(4): 456-464, (2016).
- [31] Fictorie E., Van den Boogaard A. H., Atzema E. H., ‘’Influence of punch radius in a Nakazima test for mild steel and aluminium’’, International Journal of Material Forming, 3: 1179-1182, (2010).
- [32] Tharrett M. R. and Stoughton T.B., ‘’Stretch-bend forming limits of 1008 AK steel’’, SAE Technical Paper, 2003-01-1157, (2003).