Research Article
BibTex RIS Cite

Investigation of The Joining Interface of Copper-Titanium Bimetallic Composite Materials Manufactured Using Explosive Welding Method

Year 2024, Volume: 27 Issue: 1, 47 - 58, 29.02.2024
https://doi.org/10.2339/politeknik.1091491

Abstract

In this study, copper (Cu) and titanium (Ti) plates were joined by explosion welding method using different explosive rates and Cu-Ti bimetallic composite materials were produced. The effect of explosive rate on the bonding interface of the produced Cu-Ti bimetallic composite materials was investigated by microstructure studies and mechanical tests. Optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) methods were used for the joining interface characterization. In order to determine the mechanical properties of the joining interface, tensile-shear, notch impact, bending, twisting tests and microhardness studies were carried out. As a result of the microstructure investigations, it was determined that as the explosive rate increased, the fluctuation at the bonding interface increased and accordingly, the wavelength and amplitude increased. In addition, it was determined that Cu4Ti and Cu4Ti3 intermetallic phases were formed at an explosive rate of R=3, and intermetallic phases of Cu3Ti2, Cu4Ti3, CuTi2 and CuTi3 at an explosive rate of R=3.5. As a result of the mechanical tests, it was determined that there was no visible welding defect at the bonding interface.

References

  • [1] Grinberg B. A., Pushkin M. S., Patselov A. M., Inozemtsev A. V., Ivanov M. A., Slautin O. V., Besshaposhnikov Yu. P., “The structure of molten zones in explosion welding (aluminium–tantalum, copper–titanium)”, Welding International, 31 (5): 384-393, (2017).
  • [2] Chena X., Xiaojie Lia X., Wanga X., Yana H., Kebin Lia K., Zenga X., “Bonding mechanism of explosive compaction-welding sintering”, Journal of Manufacturing Processes, 46: 1-15, (2019).
  • [3] Pamuk Ö., Durgutlu A., “Patlama kaynağı yöntemi ile birleştirilen östenitik paslanmaz çelik (AISI 316 L) – S235JR kompozit malzemelerde patlayıcı oranının mikroyapı ve yorulma özelliklerine etkisi”, Politeknik Dergisi, 21(3): 527-534, (2018).
  • [4] Zeng X., Wang Y., Li X., Li X., Zhao T., “Effects of gaseous media on interfacial microstructure and mechanical properties of titanium/steel explosive welded composite plate”, Fusion Engineering and Design, 148: 111292, (2019).
  • [5] Fındık F., “Recent developments in explosive welding”, Materials & Design, 32: 1081-1093, (2011).
  • [6] Wang Y., Li X., Wang X., Yan H., “Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding”, Fusion Engineering and Design, 137: 91-96, (2018).
  • [7] Mendes R, Ribeiro J. B., Loureiro A., “Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration”, Materials & Design, 51: 182-192, (2013).
  • [8] Aceves S. M., Espinosa-Loza F., Elmer J. W., Huber R., “Comparison of Cu, Ti and Ta interlayer explosively fabricated aluminum to stainless steel transition joints for cryogenic pressurized hydrogen storage”, International Journal of Hydrogen Energy, 40: 1490-1503, (2015).
  • [9] Banker J. G., Reineke E. G., Explosive welding, Metals Handbook.10th edition, Volume 6, ASM International; (1993).
  • [10] Torun O., “Saf bakır ve AZ91 magnezyum alaşımının sürtünme kaynağı”, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 27 (2): 110-115, (2019).
  • [11] Chen S. Y., Wu Z. W., Liu K. X., Li X. J., Luo N., Lu G. X., “Atomic diffusion behavior in Cu-Al explosive welding process”, Journal of Applied Physics, 113: 044901, (2013).
  • [12] Codel M., “Analytical chemistry of titanium metals and compounds”, New York, London: Interscience Publishers, Inc. 3-6, (1959).
  • [13] Uyguntürk E., Kahraman N., Durgutlu A. ve Gülenç B., “Titanyum Boruların Lazer Kaynak Yöntemi ile Birleştirilmesi ve Kaynak Bölgesinin Karakterizasyonu”, Politeknik Dergisi, 24(1): 255-262, (2021).
  • [14] Wang B., Chen W., Li J., Liu Z., Zhu X., “Microstructure and formation of melting zone in the interface of Ti/NiCr explosive cladding bar”, Materials & Design, 47: 74-79, (2013).
  • [15] Paul H., Skuza W., Chulist R., Miszczyk M., Gałka A., Prazmowski M., Pstrus J., “The effect of interface morphology on the electro-mechanical properties of Ti/Cu clad composites produced by explosive welding”, Metallurgical and Materials Transactions A, 51: 750-766, (2020).
  • [16] Kahraman N., Gülenç B., “Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process” Journal of Materials Processing Technology, 169: 67-71, (2005).
  • [17] Sanjurjo A., Wood B. J., Lau K. H., Tong G. T., Choi D. K., McKubre M. C. H., Song H. K., Church N., “Titanium-based coatings on copper by chemical vapor deposition in fluidized bed reactors”, Surface and Coatings Technology, 49: 110-115, (1991).
  • [18] Demidenko L. Y., Onatskaya N. A., “Solid-state welding of tubular joints of titanium and copper with application of electrohydropulse loading” Surface Engineering and Applied Electrochemistry, 44: 245-247, (2008).
  • [19] Kaya Y., “Investigation of copper-aluminium composite materials produced by explosive welding. Metals, 8 (10): 780 (2018).
  • [20] Szachogluchowicz I., Sniezek L., Hutsaylyuk W., “Low cycle fatigue properties of AA2519-Ti6Al4V laminate bonded by explosion welding”. Engineering Failure Analysis, 69: 77-87, (2016).
  • [21] Miao G., Ma H., Shen Z., Yu Y., “Research on honeycomb structure explosives and double sided explosive cladding”, Materials & Design, 63: 538-543, (2014).
  • [22] Yazdani M., Toroghinejad M. R., Hashemi S. M., “Investigation of microstructure and mechanical properties of St37 steel-Ck60 steel joints by explosive cladding” Journal of Materials Engineering and Performance, 24: 4032-4043, (2015).
  • [23] Kaya Y., “Microstructural, mechanical and corrosion ınvestigations of ship steel-aluminum bimetal composites produced by explosive welding”, Metals, 8 (7): 544, (2018).
  • [24] Kaya Y., Kahraman N., Durgutlu, A., Gülenç B., “Investigation of the microstructural, mechanical and corrosion properties of grade a ship steel-duplex stainless steel composites produced via explosive welding”, Metallurgical and Materials Transactions A, 48: 3721-3733, (2017).
  • [25] Zhang L. J., Pei Q., Zhang J. X., Bi Z. Y., Li P. C., “Study on the microstructure and mechanical properties of explosive welded 2205/X65 bimetallic sheet”, Materials & Design, 64: 462-476, (2014).
  • [26] Fronczek D. M., Chulist R., Litynska-Dobrzynska L., Szulc Z., Zieba P., Wojewoda-Budka J., “Microstructure changes and phase growth occurring at the interface of the Al/Ti explosively welded and annealed joints”, Journal of Materials Engineering and Performance, 25: 3211-3217, (2016).
  • [27] Chu Q. L., Zhang M., Li J. H., Jin Q., Fan Q. Y., Xie W. W., Luo H., Bi Z. Y., “Experimental investigation of explosion-welded Cp-Ti/Q345 bimetallic sheet filled with Cu/V based flux-cored wire”, Materials & Design, 67: 606-614, (2015).
  • [28] Murray J. L., “Alloy Phase Diagrams”, ASM International, ASM handbook, volume 3, New York, USA (1992).
  • [29] Kim Y. K., Pouraliakbar H., Hong S. I., “Effect of interfacial intermetallic compounds evolution on the mechanical response and fracture of layered Ti/Cu/Ti clad materials”, Materials Science & Engineering A, 772: 138802, (2020).
  • [30] Chen F., Wang W., Wang K., Ho P., Li H., Huang X., Chen W., “Influence of post-weld heat treatment on microstructure and adhesion of Ti/Cu composite”, Materials Science and Technology, 34 (12): 1441-1446, (2018).
  • [31] Guoyin Z., Xiaobing L., Jinghua Z., Hao Z., “Interfacial characterization and mechanical property of Ti/Cu clad sheet produced by explosive welding and annealing”, Journal of Wuhan University of Technology-Mater. Sci. Ed., 30 (6): 1198-1203 (2015).
  • [32] Mahmood Y., Chen P. W., Bataev I. A., Gao X., “Experimental and numerical investigations of interface properties of Ti6Al4V/CP-Ti/Copper composite plate prepared by explosive welding”, Defence Technology, 17: 1592-1601, (2021).
  • [33] Paul H., Chulist R. Bobrowski P., Perzyńskib K., Madej L., Mania I., Miszczyk M., Cios G., “Microstructure and properties of the interfacial region in explosively welded and post-annealed titanium-copper sheets”, Materials Characterization, 167: 110520 (2020).
  • [34] Huseini Athar M. M., Tolaminejad B., “Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding”, Materials & Design, 86: 516-525, (2015).
  • [35] Kaya Y., Kahraman N., “An investigation into the explosive welding/cladding of Grade A ship steel/AISI 316L austenitic stainless steel” Materials and Design, 52: 367-372 (2013).
  • [36] Kaya Y., Eser G., “Production of ship steel-titanium bimetallic composites through explosive cladding” Welding in the World, 63: 1547-1560, (2019).
  • [37] Kahraman N., Gülenç B., Fındık F., “Corrosion and mechanical-microstructural aspects of dissimilar joints of Ti-6Al-4V and Al plates”, International Journal of Impact Engineering, 34: 1423-1432, (2007).
  • [38] Kahraman N., Gülenç B., Fındık F., “Joining of titanium/stainless steel by explosive welding and effect on interface”, Journal of Materials Processing Technology, 169: 127-133, (2005).
  • [39] Durgutlu A., Gülenç B., Fındık F., “Examination of copper/stainless steel joints formed by explosive welding”, Materials and Design, 26 (6): 497-507, (2005).
  • [40] Gülenç B., “Investigation of interface properties and weldability of aluminium and copper plates by explosive welding method”, Materials and Design, 29: 275-278, (2008).
  • [41] Wang Y., Beom H. G., Sun M., Lin S., “Numerical simulation of explosive welding using the material point method”, International Journal of Impact Engineering, 38: 51-60, (2011).

Patlamalı Kaynak Yöntemi Kullanılarak Üretilen Bakır-Titanyum Bimetalik Kompozit Malzemelerin Birleştirme Arayüzeyinin İncelenmesi

Year 2024, Volume: 27 Issue: 1, 47 - 58, 29.02.2024
https://doi.org/10.2339/politeknik.1091491

Abstract

Bu çalışmada, bakır (Cu) ve titanyum (Ti) levhalar patlamalı kaynak yöntemiyle farklı patlayıcı oranları kullanılarak birleştirilmiş ve Cu-Ti bimetalik kompozit malzemeler üretilmiştir. Üretilen Cu-Ti bimetalik kompozit malzemelerin birleştirme arayüzeyi üzerinde patlayıcı oranının etkisi mikroyapı çalışmaları ve mekanik testler ile incelenmiştir. Birleştirme arayüzeyi karakterizasyonu için, optik mikroskop (OM), taramalı elektron mikroskobu (SEM), enerji dağılımlı spektrometre (EDS) ve X-ışını kırınımı (XRD) yöntemleri kullanılmıştır. Birleştirme arayüzeyi mekanik özelliklerini belirlemek için ise çekme-makaslama, çentik darbe, eğme, burulma testleri ve mikrosertlik çalışmaları yapılmıştır. Mikroyapı incelemeleri sonucunda, patlayıcı oranı arttıkça birleştirme arayüzeyindeki dalgalanma arttığı ve bu artışa bağlı olarak da dalga boy ve genliğinde artış tespit edilmiştir. Ayrıca, R=3 patlayıcı oranında Cu4Ti ve Cu4Ti3 R=3.5 patlayıcı oranında ise Cu3Ti2, Cu4Ti3, CuTi2 ve CuTi3 intermetalik fazlarının oluştuğu tespit edilmiştir. Mekanik testler sonucunda ise birleştirme arayüzeyinde gözle görülebilir bir kaynak hatası oluşmadığı belirlenmiştir.

References

  • [1] Grinberg B. A., Pushkin M. S., Patselov A. M., Inozemtsev A. V., Ivanov M. A., Slautin O. V., Besshaposhnikov Yu. P., “The structure of molten zones in explosion welding (aluminium–tantalum, copper–titanium)”, Welding International, 31 (5): 384-393, (2017).
  • [2] Chena X., Xiaojie Lia X., Wanga X., Yana H., Kebin Lia K., Zenga X., “Bonding mechanism of explosive compaction-welding sintering”, Journal of Manufacturing Processes, 46: 1-15, (2019).
  • [3] Pamuk Ö., Durgutlu A., “Patlama kaynağı yöntemi ile birleştirilen östenitik paslanmaz çelik (AISI 316 L) – S235JR kompozit malzemelerde patlayıcı oranının mikroyapı ve yorulma özelliklerine etkisi”, Politeknik Dergisi, 21(3): 527-534, (2018).
  • [4] Zeng X., Wang Y., Li X., Li X., Zhao T., “Effects of gaseous media on interfacial microstructure and mechanical properties of titanium/steel explosive welded composite plate”, Fusion Engineering and Design, 148: 111292, (2019).
  • [5] Fındık F., “Recent developments in explosive welding”, Materials & Design, 32: 1081-1093, (2011).
  • [6] Wang Y., Li X., Wang X., Yan H., “Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding”, Fusion Engineering and Design, 137: 91-96, (2018).
  • [7] Mendes R, Ribeiro J. B., Loureiro A., “Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration”, Materials & Design, 51: 182-192, (2013).
  • [8] Aceves S. M., Espinosa-Loza F., Elmer J. W., Huber R., “Comparison of Cu, Ti and Ta interlayer explosively fabricated aluminum to stainless steel transition joints for cryogenic pressurized hydrogen storage”, International Journal of Hydrogen Energy, 40: 1490-1503, (2015).
  • [9] Banker J. G., Reineke E. G., Explosive welding, Metals Handbook.10th edition, Volume 6, ASM International; (1993).
  • [10] Torun O., “Saf bakır ve AZ91 magnezyum alaşımının sürtünme kaynağı”, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 27 (2): 110-115, (2019).
  • [11] Chen S. Y., Wu Z. W., Liu K. X., Li X. J., Luo N., Lu G. X., “Atomic diffusion behavior in Cu-Al explosive welding process”, Journal of Applied Physics, 113: 044901, (2013).
  • [12] Codel M., “Analytical chemistry of titanium metals and compounds”, New York, London: Interscience Publishers, Inc. 3-6, (1959).
  • [13] Uyguntürk E., Kahraman N., Durgutlu A. ve Gülenç B., “Titanyum Boruların Lazer Kaynak Yöntemi ile Birleştirilmesi ve Kaynak Bölgesinin Karakterizasyonu”, Politeknik Dergisi, 24(1): 255-262, (2021).
  • [14] Wang B., Chen W., Li J., Liu Z., Zhu X., “Microstructure and formation of melting zone in the interface of Ti/NiCr explosive cladding bar”, Materials & Design, 47: 74-79, (2013).
  • [15] Paul H., Skuza W., Chulist R., Miszczyk M., Gałka A., Prazmowski M., Pstrus J., “The effect of interface morphology on the electro-mechanical properties of Ti/Cu clad composites produced by explosive welding”, Metallurgical and Materials Transactions A, 51: 750-766, (2020).
  • [16] Kahraman N., Gülenç B., “Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process” Journal of Materials Processing Technology, 169: 67-71, (2005).
  • [17] Sanjurjo A., Wood B. J., Lau K. H., Tong G. T., Choi D. K., McKubre M. C. H., Song H. K., Church N., “Titanium-based coatings on copper by chemical vapor deposition in fluidized bed reactors”, Surface and Coatings Technology, 49: 110-115, (1991).
  • [18] Demidenko L. Y., Onatskaya N. A., “Solid-state welding of tubular joints of titanium and copper with application of electrohydropulse loading” Surface Engineering and Applied Electrochemistry, 44: 245-247, (2008).
  • [19] Kaya Y., “Investigation of copper-aluminium composite materials produced by explosive welding. Metals, 8 (10): 780 (2018).
  • [20] Szachogluchowicz I., Sniezek L., Hutsaylyuk W., “Low cycle fatigue properties of AA2519-Ti6Al4V laminate bonded by explosion welding”. Engineering Failure Analysis, 69: 77-87, (2016).
  • [21] Miao G., Ma H., Shen Z., Yu Y., “Research on honeycomb structure explosives and double sided explosive cladding”, Materials & Design, 63: 538-543, (2014).
  • [22] Yazdani M., Toroghinejad M. R., Hashemi S. M., “Investigation of microstructure and mechanical properties of St37 steel-Ck60 steel joints by explosive cladding” Journal of Materials Engineering and Performance, 24: 4032-4043, (2015).
  • [23] Kaya Y., “Microstructural, mechanical and corrosion ınvestigations of ship steel-aluminum bimetal composites produced by explosive welding”, Metals, 8 (7): 544, (2018).
  • [24] Kaya Y., Kahraman N., Durgutlu, A., Gülenç B., “Investigation of the microstructural, mechanical and corrosion properties of grade a ship steel-duplex stainless steel composites produced via explosive welding”, Metallurgical and Materials Transactions A, 48: 3721-3733, (2017).
  • [25] Zhang L. J., Pei Q., Zhang J. X., Bi Z. Y., Li P. C., “Study on the microstructure and mechanical properties of explosive welded 2205/X65 bimetallic sheet”, Materials & Design, 64: 462-476, (2014).
  • [26] Fronczek D. M., Chulist R., Litynska-Dobrzynska L., Szulc Z., Zieba P., Wojewoda-Budka J., “Microstructure changes and phase growth occurring at the interface of the Al/Ti explosively welded and annealed joints”, Journal of Materials Engineering and Performance, 25: 3211-3217, (2016).
  • [27] Chu Q. L., Zhang M., Li J. H., Jin Q., Fan Q. Y., Xie W. W., Luo H., Bi Z. Y., “Experimental investigation of explosion-welded Cp-Ti/Q345 bimetallic sheet filled with Cu/V based flux-cored wire”, Materials & Design, 67: 606-614, (2015).
  • [28] Murray J. L., “Alloy Phase Diagrams”, ASM International, ASM handbook, volume 3, New York, USA (1992).
  • [29] Kim Y. K., Pouraliakbar H., Hong S. I., “Effect of interfacial intermetallic compounds evolution on the mechanical response and fracture of layered Ti/Cu/Ti clad materials”, Materials Science & Engineering A, 772: 138802, (2020).
  • [30] Chen F., Wang W., Wang K., Ho P., Li H., Huang X., Chen W., “Influence of post-weld heat treatment on microstructure and adhesion of Ti/Cu composite”, Materials Science and Technology, 34 (12): 1441-1446, (2018).
  • [31] Guoyin Z., Xiaobing L., Jinghua Z., Hao Z., “Interfacial characterization and mechanical property of Ti/Cu clad sheet produced by explosive welding and annealing”, Journal of Wuhan University of Technology-Mater. Sci. Ed., 30 (6): 1198-1203 (2015).
  • [32] Mahmood Y., Chen P. W., Bataev I. A., Gao X., “Experimental and numerical investigations of interface properties of Ti6Al4V/CP-Ti/Copper composite plate prepared by explosive welding”, Defence Technology, 17: 1592-1601, (2021).
  • [33] Paul H., Chulist R. Bobrowski P., Perzyńskib K., Madej L., Mania I., Miszczyk M., Cios G., “Microstructure and properties of the interfacial region in explosively welded and post-annealed titanium-copper sheets”, Materials Characterization, 167: 110520 (2020).
  • [34] Huseini Athar M. M., Tolaminejad B., “Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding”, Materials & Design, 86: 516-525, (2015).
  • [35] Kaya Y., Kahraman N., “An investigation into the explosive welding/cladding of Grade A ship steel/AISI 316L austenitic stainless steel” Materials and Design, 52: 367-372 (2013).
  • [36] Kaya Y., Eser G., “Production of ship steel-titanium bimetallic composites through explosive cladding” Welding in the World, 63: 1547-1560, (2019).
  • [37] Kahraman N., Gülenç B., Fındık F., “Corrosion and mechanical-microstructural aspects of dissimilar joints of Ti-6Al-4V and Al plates”, International Journal of Impact Engineering, 34: 1423-1432, (2007).
  • [38] Kahraman N., Gülenç B., Fındık F., “Joining of titanium/stainless steel by explosive welding and effect on interface”, Journal of Materials Processing Technology, 169: 127-133, (2005).
  • [39] Durgutlu A., Gülenç B., Fındık F., “Examination of copper/stainless steel joints formed by explosive welding”, Materials and Design, 26 (6): 497-507, (2005).
  • [40] Gülenç B., “Investigation of interface properties and weldability of aluminium and copper plates by explosive welding method”, Materials and Design, 29: 275-278, (2008).
  • [41] Wang Y., Beom H. G., Sun M., Lin S., “Numerical simulation of explosive welding using the material point method”, International Journal of Impact Engineering, 38: 51-60, (2011).
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Serkan Yıldırım 0000-0001-6133-6905

Yakup Kaya 0000-0002-9951-2844

Publication Date February 29, 2024
Submission Date March 22, 2022
Published in Issue Year 2024 Volume: 27 Issue: 1

Cite

APA Yıldırım, M. S., & Kaya, Y. (2024). Patlamalı Kaynak Yöntemi Kullanılarak Üretilen Bakır-Titanyum Bimetalik Kompozit Malzemelerin Birleştirme Arayüzeyinin İncelenmesi. Politeknik Dergisi, 27(1), 47-58. https://doi.org/10.2339/politeknik.1091491
AMA Yıldırım MS, Kaya Y. Patlamalı Kaynak Yöntemi Kullanılarak Üretilen Bakır-Titanyum Bimetalik Kompozit Malzemelerin Birleştirme Arayüzeyinin İncelenmesi. Politeknik Dergisi. February 2024;27(1):47-58. doi:10.2339/politeknik.1091491
Chicago Yıldırım, Mehmet Serkan, and Yakup Kaya. “Patlamalı Kaynak Yöntemi Kullanılarak Üretilen Bakır-Titanyum Bimetalik Kompozit Malzemelerin Birleştirme Arayüzeyinin İncelenmesi”. Politeknik Dergisi 27, no. 1 (February 2024): 47-58. https://doi.org/10.2339/politeknik.1091491.
EndNote Yıldırım MS, Kaya Y (February 1, 2024) Patlamalı Kaynak Yöntemi Kullanılarak Üretilen Bakır-Titanyum Bimetalik Kompozit Malzemelerin Birleştirme Arayüzeyinin İncelenmesi. Politeknik Dergisi 27 1 47–58.
IEEE M. S. Yıldırım and Y. Kaya, “Patlamalı Kaynak Yöntemi Kullanılarak Üretilen Bakır-Titanyum Bimetalik Kompozit Malzemelerin Birleştirme Arayüzeyinin İncelenmesi”, Politeknik Dergisi, vol. 27, no. 1, pp. 47–58, 2024, doi: 10.2339/politeknik.1091491.
ISNAD Yıldırım, Mehmet Serkan - Kaya, Yakup. “Patlamalı Kaynak Yöntemi Kullanılarak Üretilen Bakır-Titanyum Bimetalik Kompozit Malzemelerin Birleştirme Arayüzeyinin İncelenmesi”. Politeknik Dergisi 27/1 (February 2024), 47-58. https://doi.org/10.2339/politeknik.1091491.
JAMA Yıldırım MS, Kaya Y. Patlamalı Kaynak Yöntemi Kullanılarak Üretilen Bakır-Titanyum Bimetalik Kompozit Malzemelerin Birleştirme Arayüzeyinin İncelenmesi. Politeknik Dergisi. 2024;27:47–58.
MLA Yıldırım, Mehmet Serkan and Yakup Kaya. “Patlamalı Kaynak Yöntemi Kullanılarak Üretilen Bakır-Titanyum Bimetalik Kompozit Malzemelerin Birleştirme Arayüzeyinin İncelenmesi”. Politeknik Dergisi, vol. 27, no. 1, 2024, pp. 47-58, doi:10.2339/politeknik.1091491.
Vancouver Yıldırım MS, Kaya Y. Patlamalı Kaynak Yöntemi Kullanılarak Üretilen Bakır-Titanyum Bimetalik Kompozit Malzemelerin Birleştirme Arayüzeyinin İncelenmesi. Politeknik Dergisi. 2024;27(1):47-58.