Long-Term Stability of Novel Surface-Modified Fe3O4 Nanoparticles Used for Preparing Water Based Nanofluids
Year 2024,
Volume: 27 Issue: 1, 81 - 89, 29.02.2024
Burak Muratçobanoğlu
,
Emre Mandev
,
Bayram Şahin
,
Eyüphan Manay
,
Shabnam Rahimpour
,
Reza Teimuri-mofrad
,
Faraz Afshari
Abstract
Nanofluids are produced by suspending different solid nano-size materials (metal and nonmetal) in a base liquid and are often used in energy systems to increase thermal performance and heat transfer rate. The main problem observed in nanofluids used in heat transfer applications is their instability. Researchers have developed and proposed some solutions to obtain stable nanofluids. One of the most important solutions, is the nanoparticles surface modification method. In this work, Fe3O4 nanoparticles were subjected to chemical processes and their surfaces were modified. Three different modified nanoparticles were synthesized, which are Fe3O4@SiO2@Si(CH2)3-IM [Cl], Fe3O4@Si(CH2)3-IM [Cl], and Fe3O4@SiO2&Si(CH2)3-IM [Cl] nanoparticles. The nanofluids were prepared in 0.2% Vol. fraction by using the produced particles in base fluid which was distilled water, and stability of nanofluids were observed for 3 months. Nanofluids were subjected to ultrasonication for 3.5 h to obtain homogeneous nanofluid. Not modified water-based Fe3O4 nanofluid completely collapsed in approximately 1 week. In modified nanofluids, although sedimentation occurred, it was observed that a certain amount of the particles remained suspended even after 3 months. The most important analyses in this study are Scanning Electron Microscope, X-Ray Diffraction, and Transmission Electron Microscope.
Supporting Institution
Erzurum Technical University and Iran Ministry of Science, Research and Technology
Project Number
TÜBİTAK, Project No. 119N727 and MSRT, Project No. 99-24-800
Thanks
This study has been supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK, Project No. 119N727) and University of Tabriz and Iran Ministry of Science, Research and Technology (MSRT, Project No. 99-24-800). The authors gratefully acknowledge the support of this study.
References
- [1] Chakraborty S., Panigrahi P. K. “Stability of nanofluid: A review”, Applied Thermal Engineering, 174: 115259, (2020).
- [2] Kakaç S., Pramuanjaroenkij A. “Review of convective heat transfer enhancement with nanofluids”, International journal of heat and mass transfer", 52(13-14): 3187-3196, (2009).
- [3] Ghadimi A., Saidur R., Metselaar H. S. C. “A review of nanofluid stability properties and characterization in stationary conditions”, International journal of heat and mass transfer, 54(17-18): 4051-4068, (2011).
- [4] Xuan Y., Li Q. “Heat transfer enhancement of nanofluids”, International Journal of heat and fluid flow, 21(1): 58-64, (2000).
- [5] Kole M., Dey T. K. “Viscosity of alumina nanoparticles dispersed in car engine coolant”, Experimental Thermal and Fluid Science, 34(6): 677-683, (2010).
- [6] Garg P., Alvarado J. L., Marsh C., Carlson T. A., Kessler D. A., Annamalai K. “An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids”, International Journal of Heat and Mass Transfer, 52(21-22): 5090-5101, (2009).
- [7] Asadi A., Asadi M., Siahmargoi M., Asadi T., Andarati M. G. “The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: An experimental investigation”, International Journal of Heat and Mass Transfer, 108: 191-198, (2017).
- [8] Mahbubul I. M., Chong T. H., Khaleduzzaman S. S., Shahrul I. M., Saidur R., Long B. D., Amalina M. A. “Effect of ultrasonication duration on colloidal structure and viscosity of alumina–water nanofluid”, Industrial & Engineering Chemistry Research, 53(16): 6677-6684, (2014).
- [9] Cakmak N. K. “The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids”, Journal of Thermal Analysis and Calorimetry, 139(3): 1895-1902, (2020).
- [10] Wang X. J., Zhu D. S. I”nvestigation of pH and SDBS on enhancement of thermal conductivity in nanofluids”, Chemical Physics Letters, 470(1-3): 107-111, (2009).
- [11] Witharana S., Palabiyik I., Musina Z., Ding Y. “Stability of glycol nanofluids the theory and experiment”, Powder technology, 239: 72-77, (2013).
- [12] Zhang H., Qing S., Zhai Y., Zhang X., Zhang A. “The changes induced by pH in TiO2/water nanofluids: Stability, thermophysical properties and thermal performance”, Powder Technology, 377: 748-759, (2021).
- [13] Behzadi A., Mohammadi A. “Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery”, Journal of Nanoparticle Research, 18(9): 1-19, (2016).
- [14] Li X., Chen Y., Mo S., Jia L., Shao X. “Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid”, Thermochimica acta, 595: 6-10, (2014).
- [15] Cinausero N., Azema N., Cochez M., Ferriol M., Essahli M., Ganachaud F., Lopez‐Cuesta J. M. “Influence of the surface modification of alumina nanoparticles on the thermal stability and fire reaction of PMMA composites”, Polymers for Advanced Technologies, 19(6): 701-709, (2008).
- [16] Ghozatloo A., Rashidi A. M., Shariaty-Niasar M. “Effects of surface modification on the dispersion and thermal conductivity of CNT/water nanofluids”, International Communications in Heat and Mass Transfer, 54: 1-7, (2014).
- [17] Li D., Hong B., Fang W., Guo Y., Lin R. “Preparation of well-dispersed silver nanoparticles for oil-based nanofluids”, Industrial & engineering chemistry research, 49(4): 1697-1702, (2010).
- [18] Li X., Chen W., Zou C. “The stability, viscosity and thermal conductivity of carbon nanotubes nanofluids with high particle concentration: A surface modification approach”, Powder Technology, 361: 957-967, (2020).
- [19] Zhang H., Qing S., Gui Q., Zhang X., Zhang A. “Effects of surface modification and surfactants on stability and thermophysical properties of TiO2/water nanofluids”, Journal of Molecular Liquids, 118098: 1-13, (2021).
- [20] Kazemi-Beydokhti A., Meyghani N., Samadi M., Hajiabadi S. H. “Surface modification of carbon nanotube: Effects on pulsating heat pipe heat transfer”, Chemical Engineering Research and Design, 152: 30-37, (2019).
- [21] Khanlari A., Tuncer A. D., Şirin C., Afshari F., Güngör A. “Empirical investigation of small-scale aluminium wool packed solar air heater made with waste material”, Politeknik Dergisi, 1-1: 1337-1343, (2020).
- [22] Afshari F. “Experimental study for comparing heating and cooling performance of thermoelectric peltier”, Politeknik Dergisi, 23(3): 889-894, (2020).
- [23] Gürbüz E. Y., Sözen A., Variyenli H. İ., Khanlari A., Tuncer A. D. “A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10): 1-13, (2020).
- [24] Afshari F., Tuncer A. D., Sözen A., Variyenli H. I., Khanlari A., Gürbüz E. Y. “A comprehensive survey on utilization of hybrid nanofluid in plate heat exchanger with various number of plates”, International Journal of Numerical Methods for Heat & Fluid Flow, 32(1): 241-264, (2021).
- [25] Khanlari A., Yılmaz Aydın D., Sözen A., Gürü M., Variyenli H. İ. “Investigation of the influences of kaolin-deionized water nanofluid on the thermal behavior of concentric type heat exchanger”, Heat and Mass Transfer, 56(5): 1453-1462, (2020).
- [26] Afshari F., Sözen A., Khanlari A., Tuncer A. D. “Heat transfer enhancement of finned shell and tube heat exchanger using Fe2O3/water nanofluid”, Journal of Central South University, 28(11): 3297-3309, (2021).
- [27] Khanlari A., Sözen A., Variyenli H. İ. “Simulation and experimental analysis of heat transfer characteristics in the plate type heat exchangers using TiO2/water nanofluid”, International Journal of Numerical Methods for Heat & Fluid Flow, 29 (4): 1343-1362, (2019).
- [28] Chen C., Gunawan P., Xu R. “Self-assembled Fe3O4-layered double hydroxide colloidal nanohybrids with excellent performance for treatment of organic dyes in water”, Journal of Materials Chemistry, 21(4): 1218-1225, (2011).
- [29] Teimuri‐Mofrad R., Tahmasebi S., Payami E. “Fe3O4@ SiO2@ Im‐bisethylFc [HC2O4] as a novel recyclable heterogeneous nanocatalyst for synthesis of bis‐coumarin derivatives”, Applied Organometallic Chemistry, 33(6): 4773, (2019).
- [30] Gholamhosseini-Nazari M., Esmati S., Safa K. D., Khataee A., Teimuri-Mofrad R. “Fe3O4@ SiO2-BenzIm-Fc [Cl]/ZnCl2: a novel and efficient nano-catalyst for the one-pot three-component synthesis of pyran annulated bis-heterocyclic scaffolds under ultrasound irradiation”, Research on Chemical Intermediates, 45(4): 1841-1862, (2019).
- [31] Gholamhosseini‐Nazari M., Esmati S., Safa K. D., Khataee A., Teimuri‐Mofrad R. “Synthesis and application of novel 1, 2, 3‐triazolylferrocene‐containing ionic liquid supported on Fe3O4 nanocatalyst in the synthesis of new pyran‐substituted Betti bases”, Applied Organometallic Chemistry, 33(4): 1-15, (2019).
- [32] Teimuri-Mofrad R., Esmati S., Tahmasebi S., Gholamhosseini-Nazari M. “Bisferrocene-containing ionic liquid supported on silica coated Fe3O4: A novel nanomagnetic catalyst for the synthesis of dihydropyrano [2, 3-c] coumarin derivatives”, Journal of Organometallic Chemistry, 870: 38-50, (2018).
- [33] Teimuri-Mofrad R., Ahadzadeh I., Gholamhosseini-Nazari M., Esmati S., Shahrisa A. “Synthesis of Betti base derivatives catalyzed by nano-CuO-ionic liquid and experimental and quantum chemical studies on corrosion inhibition performance of them”, Research on Chemical Intermediates, 44(4): 2913-2927, (2018).
- [34] Teimuri‐Mofrad R., Gholamhosseini‐Nazari M., Payami E., Esmati S. “Ferrocene‐tagged ionic liquid stabilized on silica‐coated magnetic nanoparticles: Efficient catalyst for the synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions”, Applied Organometallic Chemistry, 32(1): 1-16, (2018).
- [35] Teimuri-Mofrad R., Gholamhosseini-Nazari M., Esmati S., Shahrisa A. “An efficient and green method for the synthesis of Betti base employing nano-SiO2–H3BO3 as a novel recyclable heterogeneous catalyst”, Research on Chemical Intermediates, 43(12): 6845-6861, (2017).
- [36] Sözen A., Gürü M., Khanlari A., Çiftçi E. “Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid”, Applied Thermal Engineering, 160: 114001, (2019).
- [37] Khanlari A., Tuncer A. D., Sözen A., Aytaç İ., Çiftçi E., Variyenli H. İ. “Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles”, Renewable Energy, 187: 586-602, (2022).
- [38] Yilmaz Aydin D., Gürü M., Sözen A., Çiftçi E. “Investigation of the effects of base fluid type of the nanofluid on heat pipe performance”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 235(1): 124-138, (2021).
- [39] Aydın D. Y., Gürü M., Sözen A., Çiftçi E. “Thermal Performance Improvement of the Heat Pipe by Employing Dolomite/Ethylene Glycol Nanofluid”, International Journal of Renewable Energy Development, 9(1): 23-28, (2020).
- [40] Ruan B., Jacobi A. M. “Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions”, Nanoscale research letters, 7(1): 1-14, (2012).
- [41] Garg P., Alvarado J. L., Marsh C., Carlson T. A., Kessler D. A., Annamalai K. “An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids”, International Journal of Heat and Mass Transfer, 52(21-22): 5090-5101, (2009).
- [42] Asadi A., Asadi M., Siahmargoi M., Asadi T., Andarati M. G. “The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: An experimental investigation”, International Journal of Heat and Mass Transfer, 108: 191-198, (2017).
- [43] Zheng Y., Shahsavar A., Afrand M. “Sonication time efficacy on Fe3O4-liquid paraffin magnetic nanofluid thermal conductivity: an experimental evaluation”, Ultrasonics Sonochemistry, 64: 105004, (2020).
Su Bazlı Nanoakışkanların Hazırlanmasında Kullanılan Yeni Yüzey Modifiye Fe3O4 Nanopartiküllerinin Uzun Vadeli Kararlılıklarının İncelenmesi
Year 2024,
Volume: 27 Issue: 1, 81 - 89, 29.02.2024
Burak Muratçobanoğlu
,
Emre Mandev
,
Bayram Şahin
,
Eyüphan Manay
,
Shabnam Rahimpour
,
Reza Teimuri-mofrad
,
Faraz Afshari
Abstract
Nanoakışkanlar, farklı katı nano boyutlu materyallerin (metal veya metal olmayan) bir baz sıvı içinde süspanse edilmesiyle üretilir ve genellikle enerji sistemlerinde termal performansı ve ısı transfer hızını artırmak için kullanılır. Isı transferi uygulamalarında kullanılan nanoakışkanlarda gözlenen temel problem kararsızlıklarıdır. Araştırmacılar tarafından kararlı nanoakışkanlar elde etmek için bazı çözümler geliştirilmiş ve önerilmiştir. En önemli çözümlerden biri nanopartikül yüzey modifikasyon yöntemidir. Bu çalışmada Fe3O4 nanopartikülleri kimyasal işlemlere tabi tutulmuş ve yüzeyleri modifiye edilmiştir. Fe3O4@SiO2@Si(CH2)3-IM [Cl], Fe3O4@Si(CH2)3-IM [Cl], ve Fe3O4@SiO2&Si(CH2)3-IM [Cl] nanopartiküller olmak üzere üç farklı modifiye nanopartikül sentezlenmiştir. Üretilen partiküller arıtılmış su olan baz akışkan içerisinde kullanılarak %0,2 hacim oranında nanoakışkanlar hazırlanmış ve nanoakışkanın kararlılığı 3 ay boyunca gözlemlenmiştir. Homojen nanoakışkanlar elde etmek amacıyla nanoakışkanlar 3.5 saat ultrasonikasyona tabi tutulmuştur. Su bazlı modifikasyonsuz Fe3O4 nanoakışkanı yaklaşık 1 hafta içinde tamamen çökmesi gözlemlenmiştir. Modifiye edilmiş nanoakışkanlarda ise, çökelme meydana gelmesine rağmen 3 ay sonra bile partiküllerin belirli bir miktarının süspanse kaldığı gözlemlenmiştir. Bu çalışmada, Taramalı Elektron Mikroskobu, X-Işını Kırınımı ve İletim Elektron Mikroskobu gibi önemli analiz yöntemleri kullanılmıştır.
Project Number
TÜBİTAK, Project No. 119N727 and MSRT, Project No. 99-24-800
References
- [1] Chakraborty S., Panigrahi P. K. “Stability of nanofluid: A review”, Applied Thermal Engineering, 174: 115259, (2020).
- [2] Kakaç S., Pramuanjaroenkij A. “Review of convective heat transfer enhancement with nanofluids”, International journal of heat and mass transfer", 52(13-14): 3187-3196, (2009).
- [3] Ghadimi A., Saidur R., Metselaar H. S. C. “A review of nanofluid stability properties and characterization in stationary conditions”, International journal of heat and mass transfer, 54(17-18): 4051-4068, (2011).
- [4] Xuan Y., Li Q. “Heat transfer enhancement of nanofluids”, International Journal of heat and fluid flow, 21(1): 58-64, (2000).
- [5] Kole M., Dey T. K. “Viscosity of alumina nanoparticles dispersed in car engine coolant”, Experimental Thermal and Fluid Science, 34(6): 677-683, (2010).
- [6] Garg P., Alvarado J. L., Marsh C., Carlson T. A., Kessler D. A., Annamalai K. “An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids”, International Journal of Heat and Mass Transfer, 52(21-22): 5090-5101, (2009).
- [7] Asadi A., Asadi M., Siahmargoi M., Asadi T., Andarati M. G. “The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: An experimental investigation”, International Journal of Heat and Mass Transfer, 108: 191-198, (2017).
- [8] Mahbubul I. M., Chong T. H., Khaleduzzaman S. S., Shahrul I. M., Saidur R., Long B. D., Amalina M. A. “Effect of ultrasonication duration on colloidal structure and viscosity of alumina–water nanofluid”, Industrial & Engineering Chemistry Research, 53(16): 6677-6684, (2014).
- [9] Cakmak N. K. “The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids”, Journal of Thermal Analysis and Calorimetry, 139(3): 1895-1902, (2020).
- [10] Wang X. J., Zhu D. S. I”nvestigation of pH and SDBS on enhancement of thermal conductivity in nanofluids”, Chemical Physics Letters, 470(1-3): 107-111, (2009).
- [11] Witharana S., Palabiyik I., Musina Z., Ding Y. “Stability of glycol nanofluids the theory and experiment”, Powder technology, 239: 72-77, (2013).
- [12] Zhang H., Qing S., Zhai Y., Zhang X., Zhang A. “The changes induced by pH in TiO2/water nanofluids: Stability, thermophysical properties and thermal performance”, Powder Technology, 377: 748-759, (2021).
- [13] Behzadi A., Mohammadi A. “Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery”, Journal of Nanoparticle Research, 18(9): 1-19, (2016).
- [14] Li X., Chen Y., Mo S., Jia L., Shao X. “Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid”, Thermochimica acta, 595: 6-10, (2014).
- [15] Cinausero N., Azema N., Cochez M., Ferriol M., Essahli M., Ganachaud F., Lopez‐Cuesta J. M. “Influence of the surface modification of alumina nanoparticles on the thermal stability and fire reaction of PMMA composites”, Polymers for Advanced Technologies, 19(6): 701-709, (2008).
- [16] Ghozatloo A., Rashidi A. M., Shariaty-Niasar M. “Effects of surface modification on the dispersion and thermal conductivity of CNT/water nanofluids”, International Communications in Heat and Mass Transfer, 54: 1-7, (2014).
- [17] Li D., Hong B., Fang W., Guo Y., Lin R. “Preparation of well-dispersed silver nanoparticles for oil-based nanofluids”, Industrial & engineering chemistry research, 49(4): 1697-1702, (2010).
- [18] Li X., Chen W., Zou C. “The stability, viscosity and thermal conductivity of carbon nanotubes nanofluids with high particle concentration: A surface modification approach”, Powder Technology, 361: 957-967, (2020).
- [19] Zhang H., Qing S., Gui Q., Zhang X., Zhang A. “Effects of surface modification and surfactants on stability and thermophysical properties of TiO2/water nanofluids”, Journal of Molecular Liquids, 118098: 1-13, (2021).
- [20] Kazemi-Beydokhti A., Meyghani N., Samadi M., Hajiabadi S. H. “Surface modification of carbon nanotube: Effects on pulsating heat pipe heat transfer”, Chemical Engineering Research and Design, 152: 30-37, (2019).
- [21] Khanlari A., Tuncer A. D., Şirin C., Afshari F., Güngör A. “Empirical investigation of small-scale aluminium wool packed solar air heater made with waste material”, Politeknik Dergisi, 1-1: 1337-1343, (2020).
- [22] Afshari F. “Experimental study for comparing heating and cooling performance of thermoelectric peltier”, Politeknik Dergisi, 23(3): 889-894, (2020).
- [23] Gürbüz E. Y., Sözen A., Variyenli H. İ., Khanlari A., Tuncer A. D. “A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10): 1-13, (2020).
- [24] Afshari F., Tuncer A. D., Sözen A., Variyenli H. I., Khanlari A., Gürbüz E. Y. “A comprehensive survey on utilization of hybrid nanofluid in plate heat exchanger with various number of plates”, International Journal of Numerical Methods for Heat & Fluid Flow, 32(1): 241-264, (2021).
- [25] Khanlari A., Yılmaz Aydın D., Sözen A., Gürü M., Variyenli H. İ. “Investigation of the influences of kaolin-deionized water nanofluid on the thermal behavior of concentric type heat exchanger”, Heat and Mass Transfer, 56(5): 1453-1462, (2020).
- [26] Afshari F., Sözen A., Khanlari A., Tuncer A. D. “Heat transfer enhancement of finned shell and tube heat exchanger using Fe2O3/water nanofluid”, Journal of Central South University, 28(11): 3297-3309, (2021).
- [27] Khanlari A., Sözen A., Variyenli H. İ. “Simulation and experimental analysis of heat transfer characteristics in the plate type heat exchangers using TiO2/water nanofluid”, International Journal of Numerical Methods for Heat & Fluid Flow, 29 (4): 1343-1362, (2019).
- [28] Chen C., Gunawan P., Xu R. “Self-assembled Fe3O4-layered double hydroxide colloidal nanohybrids with excellent performance for treatment of organic dyes in water”, Journal of Materials Chemistry, 21(4): 1218-1225, (2011).
- [29] Teimuri‐Mofrad R., Tahmasebi S., Payami E. “Fe3O4@ SiO2@ Im‐bisethylFc [HC2O4] as a novel recyclable heterogeneous nanocatalyst for synthesis of bis‐coumarin derivatives”, Applied Organometallic Chemistry, 33(6): 4773, (2019).
- [30] Gholamhosseini-Nazari M., Esmati S., Safa K. D., Khataee A., Teimuri-Mofrad R. “Fe3O4@ SiO2-BenzIm-Fc [Cl]/ZnCl2: a novel and efficient nano-catalyst for the one-pot three-component synthesis of pyran annulated bis-heterocyclic scaffolds under ultrasound irradiation”, Research on Chemical Intermediates, 45(4): 1841-1862, (2019).
- [31] Gholamhosseini‐Nazari M., Esmati S., Safa K. D., Khataee A., Teimuri‐Mofrad R. “Synthesis and application of novel 1, 2, 3‐triazolylferrocene‐containing ionic liquid supported on Fe3O4 nanocatalyst in the synthesis of new pyran‐substituted Betti bases”, Applied Organometallic Chemistry, 33(4): 1-15, (2019).
- [32] Teimuri-Mofrad R., Esmati S., Tahmasebi S., Gholamhosseini-Nazari M. “Bisferrocene-containing ionic liquid supported on silica coated Fe3O4: A novel nanomagnetic catalyst for the synthesis of dihydropyrano [2, 3-c] coumarin derivatives”, Journal of Organometallic Chemistry, 870: 38-50, (2018).
- [33] Teimuri-Mofrad R., Ahadzadeh I., Gholamhosseini-Nazari M., Esmati S., Shahrisa A. “Synthesis of Betti base derivatives catalyzed by nano-CuO-ionic liquid and experimental and quantum chemical studies on corrosion inhibition performance of them”, Research on Chemical Intermediates, 44(4): 2913-2927, (2018).
- [34] Teimuri‐Mofrad R., Gholamhosseini‐Nazari M., Payami E., Esmati S. “Ferrocene‐tagged ionic liquid stabilized on silica‐coated magnetic nanoparticles: Efficient catalyst for the synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions”, Applied Organometallic Chemistry, 32(1): 1-16, (2018).
- [35] Teimuri-Mofrad R., Gholamhosseini-Nazari M., Esmati S., Shahrisa A. “An efficient and green method for the synthesis of Betti base employing nano-SiO2–H3BO3 as a novel recyclable heterogeneous catalyst”, Research on Chemical Intermediates, 43(12): 6845-6861, (2017).
- [36] Sözen A., Gürü M., Khanlari A., Çiftçi E. “Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid”, Applied Thermal Engineering, 160: 114001, (2019).
- [37] Khanlari A., Tuncer A. D., Sözen A., Aytaç İ., Çiftçi E., Variyenli H. İ. “Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles”, Renewable Energy, 187: 586-602, (2022).
- [38] Yilmaz Aydin D., Gürü M., Sözen A., Çiftçi E. “Investigation of the effects of base fluid type of the nanofluid on heat pipe performance”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 235(1): 124-138, (2021).
- [39] Aydın D. Y., Gürü M., Sözen A., Çiftçi E. “Thermal Performance Improvement of the Heat Pipe by Employing Dolomite/Ethylene Glycol Nanofluid”, International Journal of Renewable Energy Development, 9(1): 23-28, (2020).
- [40] Ruan B., Jacobi A. M. “Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions”, Nanoscale research letters, 7(1): 1-14, (2012).
- [41] Garg P., Alvarado J. L., Marsh C., Carlson T. A., Kessler D. A., Annamalai K. “An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids”, International Journal of Heat and Mass Transfer, 52(21-22): 5090-5101, (2009).
- [42] Asadi A., Asadi M., Siahmargoi M., Asadi T., Andarati M. G. “The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: An experimental investigation”, International Journal of Heat and Mass Transfer, 108: 191-198, (2017).
- [43] Zheng Y., Shahsavar A., Afrand M. “Sonication time efficacy on Fe3O4-liquid paraffin magnetic nanofluid thermal conductivity: an experimental evaluation”, Ultrasonics Sonochemistry, 64: 105004, (2020).