Research Article
BibTex RIS Cite

Experimental Investigation of the Efficiency of Solar Panel Over Which Water Film Flows

Year 2024, Volume: 27 Issue: 2, 699 - 707, 27.03.2024
https://doi.org/10.2339/politeknik.1163785

Abstract

The most important energy source of the world is the sun. Solar energy can be converted to electricity by using photovoltaic (PV) solar panels. It is known that maximum electrical efficiency of PV solar panels is around 15%-20%. Therefore, it is clear that PV solar panels are not very efficient. This is due to some reasons. One of the most important of these reasons is the increase in the temperature of the PV solar panel. Therefore, PV solar panels should be cooled by means of any cooling methods. For this reason, in this study, the effect of temperature on electrical efficiency of PV solar panels has been investigated experimentally. For this purpose, an experimental setup, containing two PV solar panels with and without cooling, was installed. In this experimental setup, unlike the general literature a flowing water film, which is on the panel, obtains the cooling. It has been determined that power output of the cooled solar panel is greater than without cooling one. A 11.143 W electrical power has been gained from the PV panel due to cooling obtained by flowing water film. The average power increase by means of designed cooling system is about 9.51%. As a result, it was specified that the cooled solar panel was approximately 13.69% more efficient than the uncooled one. In this experimental study, uncertainty analysis was also performed. The uncertainty of the maximum power and electrical efficiency are ± 0.16130% and ± 1.28366%, respectively.

References

  • [1] Simcock N., “Energy”, Elsevier Publishing, Liverpool, United Kingdom, (2020).
  • [2] Pavlović B., Ivezić D., and Živković M., “A multi-criteria approach for assessing the potential of renewable energy sources for electricity generation: Case Serbia”, Energy Reports, 7: 8624-8632, (2021).
  • [3] Pearsall N., “The performance of photovoltaic (PV) systems”, Woodhead Publishing, Duxford, United Kingdom, (2017).
  • [4] Hao D., Qi L., Tairab A. M., Ahmed A., Azam A., Luo D., Pan Y., Zhang Z., and Yan J., “Solar energy harvesting technologies for PV self-powered applications: A comprehensive review”, Renewable Energy, 188: 678-697, (2022).
  • [5] Gul M., Kotak Y., and Muneer T., “Review on recent trend of solar photovoltaic technology”, Energy Exploration & Exploitation, 34/4: 485-526 (2016).
  • [6] Coşgun A. E., Demir H., “The experimental study of dust effect on solar panel efficiency”, Journal of Polytechnic, Early view.
  • [7] Abdeen O., Mordjaoui M., Haddad S., and Asma B., “The impacts of the geographical location on the performance of PV system – Skikda in Algeria and Atbara in Sudan: case study”, Int. J. Renewable Energy Technology, 10: 328-340, (2019).
  • [8] Bayrak F., Oztop H. F., and Selimefendigil F., “Experimental study for the application of different cooling techniques in photovoltaic (PV) panels”, Energy Conversion and Management, 212, (2020).
  • [9] Zapałowicz Z., Zenczak W., “Seawater cooling of PV modules mounted on ships in Poland harbour”, Heliyon, 8, (2022).
  • [10] Sharaf M., Yousef M. S., and Huzayyin A. S., “Review of cooling techniques used to enhance the efficiency of photovoltaic power systems”, Environmental Science and Pollution Research, 29: 26131-26159, (2022).
  • [11] Shah J., “Cooling techniques of solar photovoltaic panels: A critical review”, International Journal of Engineering Research & Technology (IJERT), 11, (2022).
  • [12] Čabo F. G., Nižetić S., and Giuseppe T., “Photovoltaic panels: A review of the cooling techniques”, Transactions of Famena, 1: 63-73, (2016).
  • [13] Nižetić S., Giama E., and Papadopoulos A. M., “Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part I: Passive cooling techniques”, Energy Conversion and Management, 149: 334-354, (2017).
  • [14] Dwivedi P., Sudhakar K., Soni A., Solomin E., and Kirpichnikova I., “Advanced cooling techniques of P.V. modules: A state of art”, Case Studies in Thermal Engineering, 21, (2020).
  • [15] Dixit K. K., Yadav I., Kumar G., Sanjay G., and Maurya K., “A review on cooling techniques used for photovoltaic panels”, Renewable Energy and its Control (PARC), 155: 360-364, (2020).
  • [16] Nižetić S., Giama E., and Papadopoulos A. M., “Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part II: Active cooling techniques”, Energy Conversion and Management, 155: 301-323, (2018).
  • [17] Harahap R., Suherman S., “Active versus passive cooling systems in increasing solar panel output”, Environmental Science, Engineering and Management, 1: 157-166, (2021).
  • [18] Bilen K., Işık B., Gezer S., and Kıyık F., “Theoretical investigation of the effect of fin type on cooling in air cooled photovoltaic panels”, Journal of Polytechnic, 25(2): 711-722, (2022).
  • [19] Popovici C. G., Hudișteanu S. V., Mateescu T. D., and Cherecheș N. C., “Efficiency improvement of photovoltaic panels by using air cooled heat sinks”, Energy Procedia, 85: 425-432, (2016).
  • [20] Arifin Z., Danardono D., Prija D., Hadi S., Adhi R. Setyohandoko G., and Sutanto B., “Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks”, International Journal of Photoenergy, 9, (2020).
  • [21] Amelia A. R., Irwan Y. M., Irwanto M., Leow W. Z., Gomesh N., Safwati I., “Cooling on photovoltaic panel using forced air convection induced by DC fan”, International Journal of Electrical and Computer Engineering (IJECE), 6:(2) 526-534, (2016).
  • [22] Wu S. Y., Wang T., Xia L., Zu-Guo Shen Z. G., “Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system”, Solar Energy, 180: 489-500, (2019).
  • [23] Salih M., Abd O., and Abid W., “Performance enhancement of PV array based on water spraying technique”, International Journal of Sustainable Energy Planning and Management, 4: 8-13, (2015).
  • [24] Hachicha A., Chenai C., and Hamid K., “Enhancing the performance of a photovoltaic module using different cooling methods”, Energy and Power Engineering Science, 9: 1106-1109, (2015).
  • [25] Milind N., Antony M., Francis F., Francis J., Varghese J., and Uk S., “Enhancing the efficiency of solar using cooling systems”, International Journal of Engineering Research, 7: 5-7, (2017).
  • [26] Nižetić S., Čabo F. G., and Yadav A., “Water spray cooling technique applied on a photovoltaic panel: The performance response”, Energy Conversion and Management, 108: 287-296, (2016).
  • [27] Yildirim M. A., Cebula A., and Sułowicz M., “A cooling design for photovoltaic panels water-based PV/T system”, Energy, 256, (2022).
  • [28] Agyekum E. B., Kumar S. P. Alwan N. T., Ivanovich V., and Shcheklein S. E., “Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation”, Heliyon, 7, (2021).
  • [29] Shalaby S. M., Elfakharany M. K., Moharram B. M., and Abosheiasha H. F., “Experimental study on the performance of PV with water cooling”, Energy Reports, 8: 957-961, (2022).
  • [30] Zubeer S. A., Ali O. M., “Experimental and numerical study of low concentration and water-cooling effect on PV module performance”, Case Studies in Thermal Engineering, 34, (2022).
  • [31] Salman A. H. A., Hilal K. H., and Ghadhban S. A., “Enhancing performance of PV module using water flow through porous media”, Case Studies in Thermal Engineering, 34, (2022).
  • [32] Swese E. O. E., Hançerlioğulları A., “Investigation of performance on photovoltaic/thermal (PV/T) system using magnetic nanofluids”, Journal of Polytechnic, 25(1): 411-416, (2022).
  • [33] Koçer A., Şevik S., and Güngör A., “Determination of the optimum inclination angle of solar collector for Ankara and its districts”, Uludağ University Journal of Engineering Faculty, 21: 63-78, (2016).
  • [34] Genceli O. F., “Measurement Technique (Dimension, Pressure, Flow, and Temperature Measurements)”, Birsen Publishing, İstanbul, Turkey, (2000).
  • [35] Schiro F., Alberto B., Anna S., and Nicola D., “Improving photovoltaics efficiency by water cooling: modeling and experimental approach”, Energy, 137: 798-810, (2017).
  • [36] Holman J. P., “Experimental Methods for Engineers”, McGraw-Hill Book Company, New York, USA, (2001).

Üzerinden Su Filminin Aktığı Güneş Panelinin Verimliliğinin Deneysel Olarak İncelenmesi

Year 2024, Volume: 27 Issue: 2, 699 - 707, 27.03.2024
https://doi.org/10.2339/politeknik.1163785

Abstract

Dünyanın en önemli enerji kaynağı güneştir. Güneş enerjisi, fotovoltaik (PV) güneş panelleri kullanılarak elektriğe dönüştürülebilir. PV güneş panellerinin maksimum elektriksel veriminin %15-%20 civarında olduğu bilinmektedir. Bu nedenle, PV güneş panellerinin çok verimli olmadıkları açıktır. Bu bazı nedenlerden kaynaklanmaktadır. Bu sebeplerin en önemlilerinden biri PV güneş panelinin sıcaklığındaki artıştır. Bu yüzden PV güneş panelleri, herhangi bir soğutma yöntemi ile soğutulmalıdır. Bu nedenle, bu çalışmada; panel sıcaklığının PV güneş panellerinin elektriksel verimliliğine etkisi deneysel olarak araştırılmıştır. Bu amaçla soğutmalı ve soğutmasız iki adet PV güneş paneli içeren bir deney düzeneği kurulmuştur. Bu deney düzeneğinde, genel literatürden farklı olarak panel üzerinden akan bir su filmi soğutmayı sağlamaktadır. Soğutulan solar panelin güç çıkışının, soğutmasız panele göre daha fazla olduğu belirlenmiştir. Akan su filmi ile yapılan soğutma sayesinde PV panelden 11.143 W elektrik gücü elde edilmiştir. Tasarlanan soğutma sistemi sayesinde ortalama güç artışı yaklaşık %9.51’dir. Sonuç olarak, soğutulan güneş panelinin soğutmasız olana göre %13.69 daha verimli olduğu hesaplanmıştır. Bu deneysel çalışmada ayrıca, belirsizlik analizi yapılmıştır. Maksimum gücün ve elektriksel verimin belirsizliği sırasıyla ± %0.16130 ve ± %1.28366’dır.

References

  • [1] Simcock N., “Energy”, Elsevier Publishing, Liverpool, United Kingdom, (2020).
  • [2] Pavlović B., Ivezić D., and Živković M., “A multi-criteria approach for assessing the potential of renewable energy sources for electricity generation: Case Serbia”, Energy Reports, 7: 8624-8632, (2021).
  • [3] Pearsall N., “The performance of photovoltaic (PV) systems”, Woodhead Publishing, Duxford, United Kingdom, (2017).
  • [4] Hao D., Qi L., Tairab A. M., Ahmed A., Azam A., Luo D., Pan Y., Zhang Z., and Yan J., “Solar energy harvesting technologies for PV self-powered applications: A comprehensive review”, Renewable Energy, 188: 678-697, (2022).
  • [5] Gul M., Kotak Y., and Muneer T., “Review on recent trend of solar photovoltaic technology”, Energy Exploration & Exploitation, 34/4: 485-526 (2016).
  • [6] Coşgun A. E., Demir H., “The experimental study of dust effect on solar panel efficiency”, Journal of Polytechnic, Early view.
  • [7] Abdeen O., Mordjaoui M., Haddad S., and Asma B., “The impacts of the geographical location on the performance of PV system – Skikda in Algeria and Atbara in Sudan: case study”, Int. J. Renewable Energy Technology, 10: 328-340, (2019).
  • [8] Bayrak F., Oztop H. F., and Selimefendigil F., “Experimental study for the application of different cooling techniques in photovoltaic (PV) panels”, Energy Conversion and Management, 212, (2020).
  • [9] Zapałowicz Z., Zenczak W., “Seawater cooling of PV modules mounted on ships in Poland harbour”, Heliyon, 8, (2022).
  • [10] Sharaf M., Yousef M. S., and Huzayyin A. S., “Review of cooling techniques used to enhance the efficiency of photovoltaic power systems”, Environmental Science and Pollution Research, 29: 26131-26159, (2022).
  • [11] Shah J., “Cooling techniques of solar photovoltaic panels: A critical review”, International Journal of Engineering Research & Technology (IJERT), 11, (2022).
  • [12] Čabo F. G., Nižetić S., and Giuseppe T., “Photovoltaic panels: A review of the cooling techniques”, Transactions of Famena, 1: 63-73, (2016).
  • [13] Nižetić S., Giama E., and Papadopoulos A. M., “Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part I: Passive cooling techniques”, Energy Conversion and Management, 149: 334-354, (2017).
  • [14] Dwivedi P., Sudhakar K., Soni A., Solomin E., and Kirpichnikova I., “Advanced cooling techniques of P.V. modules: A state of art”, Case Studies in Thermal Engineering, 21, (2020).
  • [15] Dixit K. K., Yadav I., Kumar G., Sanjay G., and Maurya K., “A review on cooling techniques used for photovoltaic panels”, Renewable Energy and its Control (PARC), 155: 360-364, (2020).
  • [16] Nižetić S., Giama E., and Papadopoulos A. M., “Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part II: Active cooling techniques”, Energy Conversion and Management, 155: 301-323, (2018).
  • [17] Harahap R., Suherman S., “Active versus passive cooling systems in increasing solar panel output”, Environmental Science, Engineering and Management, 1: 157-166, (2021).
  • [18] Bilen K., Işık B., Gezer S., and Kıyık F., “Theoretical investigation of the effect of fin type on cooling in air cooled photovoltaic panels”, Journal of Polytechnic, 25(2): 711-722, (2022).
  • [19] Popovici C. G., Hudișteanu S. V., Mateescu T. D., and Cherecheș N. C., “Efficiency improvement of photovoltaic panels by using air cooled heat sinks”, Energy Procedia, 85: 425-432, (2016).
  • [20] Arifin Z., Danardono D., Prija D., Hadi S., Adhi R. Setyohandoko G., and Sutanto B., “Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks”, International Journal of Photoenergy, 9, (2020).
  • [21] Amelia A. R., Irwan Y. M., Irwanto M., Leow W. Z., Gomesh N., Safwati I., “Cooling on photovoltaic panel using forced air convection induced by DC fan”, International Journal of Electrical and Computer Engineering (IJECE), 6:(2) 526-534, (2016).
  • [22] Wu S. Y., Wang T., Xia L., Zu-Guo Shen Z. G., “Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system”, Solar Energy, 180: 489-500, (2019).
  • [23] Salih M., Abd O., and Abid W., “Performance enhancement of PV array based on water spraying technique”, International Journal of Sustainable Energy Planning and Management, 4: 8-13, (2015).
  • [24] Hachicha A., Chenai C., and Hamid K., “Enhancing the performance of a photovoltaic module using different cooling methods”, Energy and Power Engineering Science, 9: 1106-1109, (2015).
  • [25] Milind N., Antony M., Francis F., Francis J., Varghese J., and Uk S., “Enhancing the efficiency of solar using cooling systems”, International Journal of Engineering Research, 7: 5-7, (2017).
  • [26] Nižetić S., Čabo F. G., and Yadav A., “Water spray cooling technique applied on a photovoltaic panel: The performance response”, Energy Conversion and Management, 108: 287-296, (2016).
  • [27] Yildirim M. A., Cebula A., and Sułowicz M., “A cooling design for photovoltaic panels water-based PV/T system”, Energy, 256, (2022).
  • [28] Agyekum E. B., Kumar S. P. Alwan N. T., Ivanovich V., and Shcheklein S. E., “Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation”, Heliyon, 7, (2021).
  • [29] Shalaby S. M., Elfakharany M. K., Moharram B. M., and Abosheiasha H. F., “Experimental study on the performance of PV with water cooling”, Energy Reports, 8: 957-961, (2022).
  • [30] Zubeer S. A., Ali O. M., “Experimental and numerical study of low concentration and water-cooling effect on PV module performance”, Case Studies in Thermal Engineering, 34, (2022).
  • [31] Salman A. H. A., Hilal K. H., and Ghadhban S. A., “Enhancing performance of PV module using water flow through porous media”, Case Studies in Thermal Engineering, 34, (2022).
  • [32] Swese E. O. E., Hançerlioğulları A., “Investigation of performance on photovoltaic/thermal (PV/T) system using magnetic nanofluids”, Journal of Polytechnic, 25(1): 411-416, (2022).
  • [33] Koçer A., Şevik S., and Güngör A., “Determination of the optimum inclination angle of solar collector for Ankara and its districts”, Uludağ University Journal of Engineering Faculty, 21: 63-78, (2016).
  • [34] Genceli O. F., “Measurement Technique (Dimension, Pressure, Flow, and Temperature Measurements)”, Birsen Publishing, İstanbul, Turkey, (2000).
  • [35] Schiro F., Alberto B., Anna S., and Nicola D., “Improving photovoltaics efficiency by water cooling: modeling and experimental approach”, Energy, 137: 798-810, (2017).
  • [36] Holman J. P., “Experimental Methods for Engineers”, McGraw-Hill Book Company, New York, USA, (2001).
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

İsmail Erdoğan 0000-0003-1837-2868

Kemal Bilen 0000-0003-1775-7977

Sinan Kıvrak 0000-0001-5195-0311

Publication Date March 27, 2024
Submission Date August 18, 2022
Published in Issue Year 2024 Volume: 27 Issue: 2

Cite

APA Erdoğan, İ., Bilen, K., & Kıvrak, S. (2024). Experimental Investigation of the Efficiency of Solar Panel Over Which Water Film Flows. Politeknik Dergisi, 27(2), 699-707. https://doi.org/10.2339/politeknik.1163785
AMA Erdoğan İ, Bilen K, Kıvrak S. Experimental Investigation of the Efficiency of Solar Panel Over Which Water Film Flows. Politeknik Dergisi. March 2024;27(2):699-707. doi:10.2339/politeknik.1163785
Chicago Erdoğan, İsmail, Kemal Bilen, and Sinan Kıvrak. “Experimental Investigation of the Efficiency of Solar Panel Over Which Water Film Flows”. Politeknik Dergisi 27, no. 2 (March 2024): 699-707. https://doi.org/10.2339/politeknik.1163785.
EndNote Erdoğan İ, Bilen K, Kıvrak S (March 1, 2024) Experimental Investigation of the Efficiency of Solar Panel Over Which Water Film Flows. Politeknik Dergisi 27 2 699–707.
IEEE İ. Erdoğan, K. Bilen, and S. Kıvrak, “Experimental Investigation of the Efficiency of Solar Panel Over Which Water Film Flows”, Politeknik Dergisi, vol. 27, no. 2, pp. 699–707, 2024, doi: 10.2339/politeknik.1163785.
ISNAD Erdoğan, İsmail et al. “Experimental Investigation of the Efficiency of Solar Panel Over Which Water Film Flows”. Politeknik Dergisi 27/2 (March 2024), 699-707. https://doi.org/10.2339/politeknik.1163785.
JAMA Erdoğan İ, Bilen K, Kıvrak S. Experimental Investigation of the Efficiency of Solar Panel Over Which Water Film Flows. Politeknik Dergisi. 2024;27:699–707.
MLA Erdoğan, İsmail et al. “Experimental Investigation of the Efficiency of Solar Panel Over Which Water Film Flows”. Politeknik Dergisi, vol. 27, no. 2, 2024, pp. 699-07, doi:10.2339/politeknik.1163785.
Vancouver Erdoğan İ, Bilen K, Kıvrak S. Experimental Investigation of the Efficiency of Solar Panel Over Which Water Film Flows. Politeknik Dergisi. 2024;27(2):699-707.