Taşıtlarda Aks Yükünün Lastik Davranışına Etkilerinin İncelenmesi
Year 2024,
Volume: 27 Issue: 2, 603 - 614, 27.03.2024
Turan Alp Arslan
,
İbrahim Çelik
,
Faruk Emre Aysal
,
Hüseyin Bayrakçeken
Abstract
Bu çalışmada, taşıt güvenlik ve kontrol sistemlerinin işletilmesinde önemli bir parametre olan kayma açısı matematiksel olarak incelenmiştir. Fiala lastik modeli temel alınarak oluşturulan matematiksel model ile aks yükünün 1000 N ile 6000 N arasındaki değerleri için yanal kuvvet ve kendini ayarlama torkunun kayma açısına bağlı değişimi belirlenmiştir. Bu parametreler ile pnömatik iz mesafesi, temas alanı basınç dağılımı, temas alanı maksimum basınç değeri, yanal lastik sapması ve viraj rijitliği değerleri hesaplanmıştır. Benzer şekilde kamber açısının belirli değerleri için ise kamber itki kuvveti ve kamber rijitliği değerleri incelenmiştir. Lastik mekaniği için büyük önem arz eden tüm bu parametrelerin aks yüküne bağlı olarak değişimleri araştırılmıştır. Çalışmada 205/55R16 ebatlarındaki standart bir pnömatik lastiğe sahip tek bir tekerlek örneği, kuru asfalt yol şartlarında, esnek tekerlek-rijit zemin yol etkileşimi açısından araştırılmıştır.
References
- [1] World Health Organization, “Global status report on road safety 2018”, Geneva, Switzerland, (2018).
- [2] Chang F.R., Huang H.L., Schwebel D.C., Chan A.H. and Hu G.Q., “Global road traffic injury statistics: Challenges, mechanisms and solutions”, Chinese Journal of Traumatology, 23(4):216-218, (2020).
- [3] World Health Organization, “Global plan for the decade of action for road safety 2011-2020”, Geneva, Switzerland, (2011).
- [4] The United Nations, “Sustainable development goal 3, ensure healthy lives and promote well-being for all at all ages”, (2019).
- [5] Huang H., Yin Q., Schwebel D.C., Ning P. and Hu G., “Availability and consistency of health and non-health data for road traffic fatality: Analysis of data from 195 countries, 1985-2013”, Accident Analysis and Prevention, 108:220-226, (2017).
- [6] Kuşkapan E. and Çodur M.Y., “Performance analysis of multilayer perceptron, regression and nearest neighbor algorithms in classification of traffic accidents”, Journal of Polytechnic, 25(1):373-380, (2022).
- [7] Hsu Y.H.J., Laws S.M. and Gerdes J.C., “Estimation of tire slip angle and friction limits using steering torque”, IEEE Transactions on Control Systems Technology, 18(4):896-907, (2010).
- [8] Bengler K., Dietmayer K., Farber B., Maurer M., Stiller C. and Winner H., “Three decades of driver assistance systems: Review and future perspectives”, IEEE Intelligent Transportation Systems, 6(4):6-22, (2014).
- [9] Lu M., “Modelling the effects of road traffic safety measures”, Accident Analysis & Prevention, 38(3):507-517, (2006).
- [10] Winner V.H., Hakuli S., Lotz F. and Singer C., “Handbuch Fahrer-assistenzsysteme”, 3nd ed., Springer Vieweg, ISBN-13: 978-3-658-05733-6, Berlin, Germany, (2015).
- [11] Aga M. and Okada A., “Analysis of vehicle stability control (VSC)’s effectiveness from accident data”, In: Proceedings of 18th International Technical Conference on the Enhanced Safety of Vehicles, Nagoya, Japan, Paper no. 541, (2003).
- [12] Sferco R., Page Y., Coz J.Y.L. and Fay P.A., “Potential effectiveness of the electronic stability programs (ESP)-What European field studies tell us”, In: Proceedings of 17th International Technical Conference on the Enhanced Safety of Vehicles, Amsterdam, Netherlands, Paper no. 2001-S2-O-327, (2001).
- [13] Zanten A.T., Erhardt R. and Pfaff G., “VDC, the vehicle dynamics control system of Bosch”, SAE Transactions, 104(6):1419-1436, (1995).
- [14] Kiencke U. and Daiß A., “Observation of lateral vehicle dynamics”, Control Engineering Practice, 5(8):1145-1150, (1997).
- [15] Fukada Y., “Estimation of vehicle slip-angle with combination method of model observer and direct integration” In: Proceedings of 4th International Symposium Advance Vehicle Control, Nagoya, Japan, Paper no. 9836626, 201-206, (1998).
- [16] Venhovens P.J.T. and Naab K., “Vehicle dynamics estimation using Kalman filters”, Vehicle System Dynamics, 32(2-3):171–184, (1999).
- [17] Stephant J., Charara A. and Meizel D., “Virtual sensor: Application to vehicle sideslip angle and transversal forces”, IEEE Transactions Industrial Electronics, 51(2):278–289, (2004).
- [18] Hahn J.O., Rajamani R. and Alexander L., “GPS-based real-time identification of tire-road friction coefficient”, IEEE Transactions on Control Systems Technology, 10(3):331-342, (2002).
- [19] Yasui Y., Tanaka W., Muragishi Y., Ono E., Momiyama M., Katoh H., Aizawa H. and Imoto Y., “Estimation of lateral grip margin based on self-aligning torque for vehicle dynamics enhancement”, SAE Transactions, 113(6):632-637, (2004).
- [20] Iijima T., Raksincharoensak P., Michitsuji Y. and Nagai M., “Vehicle side slip angle estimation methodology using a drive recorder”, Journal of Vibration and Control, 16(4):571-583, (2010).
- [21] Behroozinia P., Khaleghian S., Taheri S. and Mirzaeifar R., “An investigation towards intelligent tyres using finite element analysis”, International Journal of Pavement Engineering, 21(3):311-321, (2020).
- [22] Cho K., Son H., Wang Y., Nam K. and Choi S., “Vehicle side-slip angle estimation of ground vehicles based on a lateral acceleration compensation”, IEEE Access, 8:180433-180443, (2020).
- [23] Çelik İ. and Sonugür G., “The test of electric vehicle with electronic differential system in different road conditions”, Journal of Polytechnic, 25(3):1021-1030, (2022).
- [24] Han Y., Lu Y., Chen N. and Wang H., “Research on the identification of tyre-road peak friction coefficient under full slip rate range based on normalized tyre model”, Actuators, 11(59):1-17, (2022).
- [25] Lee H. and Choi S., “Development of collision avoidance system in slippery road conditions”, IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2022.3168668, (2022).
- [26] Ryu J., Rossetter E.J. and Gerdes J.C., “Vehicle sideslip and roll parameter estimation using GPS”, In: Proceedings of 6th International Symposium on Advanced Vehicle Control, Hiroshima, Japan, 373-380, (2002).
- [27] Baffet G., Charara A. and Lechner D., “Estimation of vehicle sideslip, tire force and wheel cornering stiffness”, Control Engineering Practice, 17(11):1255-1264, (2009).
- [28] Daily R. and Bevly D.M., “The use of GPS for vehicle stability control systems”, IEEE Transactions on Industrial Electronics, 51(2):270-277, (2004).
- [29] Ryu J. and Gerdes J.C., “Integrating inertial sensors with GPS for vehicle dynamics control”, Journal of Dynamic Systems, Measurement, and Control, 126(2)-243-254, (2004).
- [30] Piyabongkarn D., Rajamani R., Grogg J.A. and Lew J.Y., “Development and experimental evaluation of a slip angle estimator for vehicle stability control”, IEEE Transactions on Control Systems Technology, 17(1)-78-88, (2009).
- [31] Grip H.F., Imsland L., Johansen T.A., Kalkkuhl J.C. and Suissa A., “Vehicle sideslip estimation: Design, implementation, and experimental validation”, IEEE Control Systems, 29(5): 36-52, (2009).
- [32] Ray L.R., “Nonlinear estimation of vehicle state and tire forces”, In: 1992 American Control Conference, Chicago, USA, 526-530, (1992).
- [33] Ray L.R., “Nonlinear state and tire force estimation for advanced vehicle control”, IEEE Transactions on Control Systems Technology, 3(1):117-124, (1995).
- [34] Ray L.R., “Nonlinear tire force estimation and road friction identification: Simulation and experiments”, Automatica, 33(10):1819-1833, (1997).
- [35] Cheli F., Sabbioni E., Pesce M. and Melzi S., “A methodology for vehicle sideslip angle identification: Comparison with experimental data”, International Journal of Vehicle Mechanics and Mobility, 45(6):549-563, (2007).
- [36] You S.H., Hahn J.O. and Lee H., “New adaptive approaches to real-time estimation of vehicle sideslip angle”, Control Engineering Practice, 17(12):1367-1379, (2009).
- [37] Stéphant J., Charara A. and Meizel D., “Evaluation of a sliding mode observer for vehicle sideslip angle”, Control Engineering Practice, 15(7):803-812, (2007).
- [38] Kim H.H. and Ryu J., “Sideslip angle estimation considering short-duration longitudinal velocity variation”, International Journal of Automotive Technology, 12(4):545-553, (2011).
- [39] Pi D.W., Chen N., Wang J.X. and Zhang B.J., “Design and evaluation of sideslip angle observer for vehicle stability control”, International Journal of Automotive Technology, 12(3):391-399, (2011).
- [40] Köylü H., “Improvement of dynamic wheel load oscillations by coupling pitch motion into bounce motion during pitching motion of passenger vehicle”, Journal of Polytechnic, 24(4):1473-1489, (2021).
- [41] Chatur S., “Computer based wireless automobile wheel alignment system using accelerometer”, The International Journal of Engineering And Science, 4(9):62-69, (2015).
- [42] Abe M., “Vehicle handling dynamics, theory and application”, 1nd ed., Butterworth-Heinemann, ISBN–13: 978-1-8561-7749-8, Oxford, UK, (2009).
- [43] Çetinkaya S., “Taşıt mekaniği”, 8th ed., Nobel Akademik Yayıncılık, ISBN: 978-605-133-463-9, Ankara, Turkey, (2017).
- [44] Gent A.N. and Walter J.D., “The pneumatic tire”, 1nd ed., National Highway Traffic Safety Administration, DOT HS 810 561, Washington, USA, (2006).
- [45] Smith N.D., “Understanding parameters influencing tire modeling”, In: Formula SAE Platform, Fort Collins, USA, (2004).
- [46] Milliken W.F. and Milliken D.L., “Race car vehicle dynamics”, 5th ed., SAE Publications, ISBN1-56091-526-9, Allegheny, USA, (1995).
- [47] Kavitha C., Shankar S.A., Karthika K., Ashok B. and Ashok S.D., “Active camber and toe control strategy for the double wishbone suspension system”, Journal of King Saud University – Engineering Sciences, 31(4):375-384, (2019).
- [48] Balkwill J., “Performance vehicle dynamics, engineering and applications”, 1nd ed., Butterworth-Heinemann, ISBN: 978-0-12-812693-6, Oxford, UK, (2018).
- [49] Blundell M. and Harty D., “The multibody systems approach to vehicle dynamics”, 1nd ed., Butterworth-Heinemann, ISBN: 978-0-08-099425-3, Oxford, UK, (2004).
- [50] Mitsuhashi Y. and Fujii S., “Validation of Fiala model for motorcycle with FEM tire model”, Transactions of Society of Automotive Engineers of Japan, 44(1):75-80, (2013).
- [51] Fiala E., “Seitenkräfte am rollenden Luftreifen”, VDI-Zeitschrift, 96:973-979, (1954).
- [52] Babulal Y., Stallmann M.J. and Els P.S., “Parameterisation and modelling of large off-road tyres for on-road handling analyses”, Journal of Terramechanics, 61:77-85, (2015).
- [53] Ünker F., “ Angular momentum control for preventing rollover of a heavy vehicle”, International Journal of Automotive Science and Technology, 6(2):135-140, (2022).
- [54] Eroğlu M., Koç M. A., Kozan R. and Esen İ., “Comparative analysis of full car model with driver using PID and LQR controllers”, International Journal of Automotive Science and Technology, 6(2):178-188, (2022).
- [55] Kageyama I. and Kuwahara S., “A study on tire modeling for camber thrust and camber torque”, JSAE Review, 23(3):325-331, (2002).
Investigation of the Effects of Axle Load on Tyre Behaviour in Vehicles
Year 2024,
Volume: 27 Issue: 2, 603 - 614, 27.03.2024
Turan Alp Arslan
,
İbrahim Çelik
,
Faruk Emre Aysal
,
Hüseyin Bayrakçeken
Abstract
In this study, the slip angle which is a significant parameter in the operation of vehicle safety and control systems was investigated mathematically. With the model developed based on the Fiala tire model, the variation of the lateral force and self-aligning torque depending on the slip angle was obtained for the axle load values between 1000 N and 6000 N. By using these parameters, pneumatic trail, tyre contact area pressure distribution, tyre contact area maximum pressure value, lateral tyre deflection, and cornering stiffness were calculated. Similarly, for certain values of camber angle, camber thrust, and camber stiffness were examined. The changes of all these parameters which are of great importance for tyre mechanics depending on the axle load was investigated. A single-wheel sample with a standard 205/55R16 pneumatic tyre was investigated in terms of flexible wheel-rigid ground road interaction under dry asphalt road conditions..
References
- [1] World Health Organization, “Global status report on road safety 2018”, Geneva, Switzerland, (2018).
- [2] Chang F.R., Huang H.L., Schwebel D.C., Chan A.H. and Hu G.Q., “Global road traffic injury statistics: Challenges, mechanisms and solutions”, Chinese Journal of Traumatology, 23(4):216-218, (2020).
- [3] World Health Organization, “Global plan for the decade of action for road safety 2011-2020”, Geneva, Switzerland, (2011).
- [4] The United Nations, “Sustainable development goal 3, ensure healthy lives and promote well-being for all at all ages”, (2019).
- [5] Huang H., Yin Q., Schwebel D.C., Ning P. and Hu G., “Availability and consistency of health and non-health data for road traffic fatality: Analysis of data from 195 countries, 1985-2013”, Accident Analysis and Prevention, 108:220-226, (2017).
- [6] Kuşkapan E. and Çodur M.Y., “Performance analysis of multilayer perceptron, regression and nearest neighbor algorithms in classification of traffic accidents”, Journal of Polytechnic, 25(1):373-380, (2022).
- [7] Hsu Y.H.J., Laws S.M. and Gerdes J.C., “Estimation of tire slip angle and friction limits using steering torque”, IEEE Transactions on Control Systems Technology, 18(4):896-907, (2010).
- [8] Bengler K., Dietmayer K., Farber B., Maurer M., Stiller C. and Winner H., “Three decades of driver assistance systems: Review and future perspectives”, IEEE Intelligent Transportation Systems, 6(4):6-22, (2014).
- [9] Lu M., “Modelling the effects of road traffic safety measures”, Accident Analysis & Prevention, 38(3):507-517, (2006).
- [10] Winner V.H., Hakuli S., Lotz F. and Singer C., “Handbuch Fahrer-assistenzsysteme”, 3nd ed., Springer Vieweg, ISBN-13: 978-3-658-05733-6, Berlin, Germany, (2015).
- [11] Aga M. and Okada A., “Analysis of vehicle stability control (VSC)’s effectiveness from accident data”, In: Proceedings of 18th International Technical Conference on the Enhanced Safety of Vehicles, Nagoya, Japan, Paper no. 541, (2003).
- [12] Sferco R., Page Y., Coz J.Y.L. and Fay P.A., “Potential effectiveness of the electronic stability programs (ESP)-What European field studies tell us”, In: Proceedings of 17th International Technical Conference on the Enhanced Safety of Vehicles, Amsterdam, Netherlands, Paper no. 2001-S2-O-327, (2001).
- [13] Zanten A.T., Erhardt R. and Pfaff G., “VDC, the vehicle dynamics control system of Bosch”, SAE Transactions, 104(6):1419-1436, (1995).
- [14] Kiencke U. and Daiß A., “Observation of lateral vehicle dynamics”, Control Engineering Practice, 5(8):1145-1150, (1997).
- [15] Fukada Y., “Estimation of vehicle slip-angle with combination method of model observer and direct integration” In: Proceedings of 4th International Symposium Advance Vehicle Control, Nagoya, Japan, Paper no. 9836626, 201-206, (1998).
- [16] Venhovens P.J.T. and Naab K., “Vehicle dynamics estimation using Kalman filters”, Vehicle System Dynamics, 32(2-3):171–184, (1999).
- [17] Stephant J., Charara A. and Meizel D., “Virtual sensor: Application to vehicle sideslip angle and transversal forces”, IEEE Transactions Industrial Electronics, 51(2):278–289, (2004).
- [18] Hahn J.O., Rajamani R. and Alexander L., “GPS-based real-time identification of tire-road friction coefficient”, IEEE Transactions on Control Systems Technology, 10(3):331-342, (2002).
- [19] Yasui Y., Tanaka W., Muragishi Y., Ono E., Momiyama M., Katoh H., Aizawa H. and Imoto Y., “Estimation of lateral grip margin based on self-aligning torque for vehicle dynamics enhancement”, SAE Transactions, 113(6):632-637, (2004).
- [20] Iijima T., Raksincharoensak P., Michitsuji Y. and Nagai M., “Vehicle side slip angle estimation methodology using a drive recorder”, Journal of Vibration and Control, 16(4):571-583, (2010).
- [21] Behroozinia P., Khaleghian S., Taheri S. and Mirzaeifar R., “An investigation towards intelligent tyres using finite element analysis”, International Journal of Pavement Engineering, 21(3):311-321, (2020).
- [22] Cho K., Son H., Wang Y., Nam K. and Choi S., “Vehicle side-slip angle estimation of ground vehicles based on a lateral acceleration compensation”, IEEE Access, 8:180433-180443, (2020).
- [23] Çelik İ. and Sonugür G., “The test of electric vehicle with electronic differential system in different road conditions”, Journal of Polytechnic, 25(3):1021-1030, (2022).
- [24] Han Y., Lu Y., Chen N. and Wang H., “Research on the identification of tyre-road peak friction coefficient under full slip rate range based on normalized tyre model”, Actuators, 11(59):1-17, (2022).
- [25] Lee H. and Choi S., “Development of collision avoidance system in slippery road conditions”, IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2022.3168668, (2022).
- [26] Ryu J., Rossetter E.J. and Gerdes J.C., “Vehicle sideslip and roll parameter estimation using GPS”, In: Proceedings of 6th International Symposium on Advanced Vehicle Control, Hiroshima, Japan, 373-380, (2002).
- [27] Baffet G., Charara A. and Lechner D., “Estimation of vehicle sideslip, tire force and wheel cornering stiffness”, Control Engineering Practice, 17(11):1255-1264, (2009).
- [28] Daily R. and Bevly D.M., “The use of GPS for vehicle stability control systems”, IEEE Transactions on Industrial Electronics, 51(2):270-277, (2004).
- [29] Ryu J. and Gerdes J.C., “Integrating inertial sensors with GPS for vehicle dynamics control”, Journal of Dynamic Systems, Measurement, and Control, 126(2)-243-254, (2004).
- [30] Piyabongkarn D., Rajamani R., Grogg J.A. and Lew J.Y., “Development and experimental evaluation of a slip angle estimator for vehicle stability control”, IEEE Transactions on Control Systems Technology, 17(1)-78-88, (2009).
- [31] Grip H.F., Imsland L., Johansen T.A., Kalkkuhl J.C. and Suissa A., “Vehicle sideslip estimation: Design, implementation, and experimental validation”, IEEE Control Systems, 29(5): 36-52, (2009).
- [32] Ray L.R., “Nonlinear estimation of vehicle state and tire forces”, In: 1992 American Control Conference, Chicago, USA, 526-530, (1992).
- [33] Ray L.R., “Nonlinear state and tire force estimation for advanced vehicle control”, IEEE Transactions on Control Systems Technology, 3(1):117-124, (1995).
- [34] Ray L.R., “Nonlinear tire force estimation and road friction identification: Simulation and experiments”, Automatica, 33(10):1819-1833, (1997).
- [35] Cheli F., Sabbioni E., Pesce M. and Melzi S., “A methodology for vehicle sideslip angle identification: Comparison with experimental data”, International Journal of Vehicle Mechanics and Mobility, 45(6):549-563, (2007).
- [36] You S.H., Hahn J.O. and Lee H., “New adaptive approaches to real-time estimation of vehicle sideslip angle”, Control Engineering Practice, 17(12):1367-1379, (2009).
- [37] Stéphant J., Charara A. and Meizel D., “Evaluation of a sliding mode observer for vehicle sideslip angle”, Control Engineering Practice, 15(7):803-812, (2007).
- [38] Kim H.H. and Ryu J., “Sideslip angle estimation considering short-duration longitudinal velocity variation”, International Journal of Automotive Technology, 12(4):545-553, (2011).
- [39] Pi D.W., Chen N., Wang J.X. and Zhang B.J., “Design and evaluation of sideslip angle observer for vehicle stability control”, International Journal of Automotive Technology, 12(3):391-399, (2011).
- [40] Köylü H., “Improvement of dynamic wheel load oscillations by coupling pitch motion into bounce motion during pitching motion of passenger vehicle”, Journal of Polytechnic, 24(4):1473-1489, (2021).
- [41] Chatur S., “Computer based wireless automobile wheel alignment system using accelerometer”, The International Journal of Engineering And Science, 4(9):62-69, (2015).
- [42] Abe M., “Vehicle handling dynamics, theory and application”, 1nd ed., Butterworth-Heinemann, ISBN–13: 978-1-8561-7749-8, Oxford, UK, (2009).
- [43] Çetinkaya S., “Taşıt mekaniği”, 8th ed., Nobel Akademik Yayıncılık, ISBN: 978-605-133-463-9, Ankara, Turkey, (2017).
- [44] Gent A.N. and Walter J.D., “The pneumatic tire”, 1nd ed., National Highway Traffic Safety Administration, DOT HS 810 561, Washington, USA, (2006).
- [45] Smith N.D., “Understanding parameters influencing tire modeling”, In: Formula SAE Platform, Fort Collins, USA, (2004).
- [46] Milliken W.F. and Milliken D.L., “Race car vehicle dynamics”, 5th ed., SAE Publications, ISBN1-56091-526-9, Allegheny, USA, (1995).
- [47] Kavitha C., Shankar S.A., Karthika K., Ashok B. and Ashok S.D., “Active camber and toe control strategy for the double wishbone suspension system”, Journal of King Saud University – Engineering Sciences, 31(4):375-384, (2019).
- [48] Balkwill J., “Performance vehicle dynamics, engineering and applications”, 1nd ed., Butterworth-Heinemann, ISBN: 978-0-12-812693-6, Oxford, UK, (2018).
- [49] Blundell M. and Harty D., “The multibody systems approach to vehicle dynamics”, 1nd ed., Butterworth-Heinemann, ISBN: 978-0-08-099425-3, Oxford, UK, (2004).
- [50] Mitsuhashi Y. and Fujii S., “Validation of Fiala model for motorcycle with FEM tire model”, Transactions of Society of Automotive Engineers of Japan, 44(1):75-80, (2013).
- [51] Fiala E., “Seitenkräfte am rollenden Luftreifen”, VDI-Zeitschrift, 96:973-979, (1954).
- [52] Babulal Y., Stallmann M.J. and Els P.S., “Parameterisation and modelling of large off-road tyres for on-road handling analyses”, Journal of Terramechanics, 61:77-85, (2015).
- [53] Ünker F., “ Angular momentum control for preventing rollover of a heavy vehicle”, International Journal of Automotive Science and Technology, 6(2):135-140, (2022).
- [54] Eroğlu M., Koç M. A., Kozan R. and Esen İ., “Comparative analysis of full car model with driver using PID and LQR controllers”, International Journal of Automotive Science and Technology, 6(2):178-188, (2022).
- [55] Kageyama I. and Kuwahara S., “A study on tire modeling for camber thrust and camber torque”, JSAE Review, 23(3):325-331, (2002).