Research Article
BibTex RIS Cite

Tuğla Kili ile Üretilen Gözenekli Blokların (Tuğlaların) Fiziksel ve Mekanik Özelliklerinin Belirlenmesi

Year 2024, Volume: 27 Issue: 3, 985 - 994, 25.07.2024
https://doi.org/10.2339/politeknik.1246745

Abstract

Kil tuğla, özellikle köpük oluşturucu maddelerdeki gelişmelere paralel olarak, sürdürülebilir ve nispeten daha ucuz bir malzeme olması nedeniyle son zamanlarda inşaat endüstrisi için çok vazgeçilmez bir ürün haline gelmiştir. Bu tuğlaların iki ana sorunu vardır. Bunlar, yüksek birim hacim ağırlığı ve termal iletkenliktir. Bu çalışmada, tuğlanın birim ağırlığını azaltmak ve ısı yalıtımını arttırmak için tuğla hammaddesine genleşme maddesi ilave edilmiştir. Numuneler belirli oranlarda genleşen karışıma eklenerek üretilmiştir. Üretilen numuneler 850, 900, 950, 1000, 1050 ve 1100 oC'de pişirilerek 100×100×100 mm tuğla elde edilmiştir. Üretilen tuğlaların birim hacim ağırlığı, su emme, boşluk oranı, basınç dayanımı, donma-çözülme sonrası basınç dayanımı ve ısıl iletkenlik özellikleri incelenmiştir. Araştırmada elde edilen verilere göre optimum genleşme kimyasal oranı %15'tir. En uygun pişirim sıcaklığı 1100 oC olarak belirlenmiştir. 1100 °C'de %15 genleştiricili, birim hacim ağırlığı 744 kg/m3, su emmesi %31,83, boşluk oranı %36,88, basınç dayanımı 6,93 MPa, donma-çözülme sonrası basınç dayanımı 5,10 MPa ve ısı iletkenliği λ=0,16 W olarak üretilen numuneler /mK.

References

  • [1] Polat Arı T. “Investigation of characteristics of lightweight building components produced by getting clay paste expanded with a chemical”. Master Thesis. Niğde Ömer Halisdemir University Institute of Science, 2011 Niğde- Turkey.
  • [2] Bories C, Borredon ME, Vedrenne E, Vilarem G. “Development of eco-friendly porous fired clay bricks using pore-forming agents: A review”. Journal of Environmental Management; 143: 186-196. (2014).
  • [3] Aouba L, Coutand M, Perrin B, Lemercier H. “Predicting thermal performance of fired clay bricks lightened by adding organic matter: Improvement of brick geometry”. Journal of Building Physics, Vol. 38(6) 531–547, (2015).
  • [4] Simsek O, Gökçe M . “Investigation of the expanded ability of Kalecik Ankara clay feature”. Journal of Polytechnic; 20 (3) : 639-645, (2017).
  • [5] Metz B. Intergovernmental panel on climate change. climate change 2001: mitigation. Cambridge (UK): Cambridge University Press, (2001).
  • [6] Muñoz P, Morales MP, Mendívil MA, Juárez MC, Muñoz L. “Using of waste pomace from winery industry to improve thermal insulation of fired clay bricks. Eco-friendly way of building construction”. Construction and Building Materials, 71:181–187, (2014).
  • [7] Wouter P. Energy performance of building: assessment of innovative technologies. ENPER-TEBUC, Final Report, (2004).
  • [8] European Environment Agency. Energy efficiency and energy consumption in the household sector (ENER 022) Assessment published. April, (2012).
  • [9] Zhang L. “Production of bricks from waste materials–A review”. Construction and Building Materials,47: 643– 655, (2013).
  • [10] Sütcü M, Akkurt S. “The use of recycled paper processing residue in making porous brick with reduced thermal conductivity”. Ceram. Int.; 35: 2625–31, (2009).
  • [11] Saiah R, Perrin B, Rigal L. “Improvement of thermal properties of fired clays by introduction of vegetable matter”. Journal of Building Physics, 34 (2): 124–142, (2010).
  • [12] Gürhan G, Simsek O. “Porous clay bricks manufactured with rice husks”. Construction and Building Materials; 40: 390–396, (2013).
  • [13] Faria KCP, Gurgel RF, Holanda JNF. “Recycling of sugarcane bagasse ash waste in the production of clay bricks”. J. Environ. Manage., 101:7–12, (2012).
  • [14] Njeumen Nkayem DE, Mbey JA, BKenne Diffo B, Njopwouo D. “Preliminary study on the use of corn cob as pore forming agent in lightweight clay bricks: Physical and mechanical features”. Journal of Building Engineering, 5: 254–259, (2016).
  • [15] Mohammed MS, Ahmed AE.-SI Osman RM, Khattab I. “Combinations of organic and inorganic wastes for brick production”. Polym. Compos., 35: 174-179, (2014).
  • [16] Sütcü M, Oztürk S, Yalamac E, Gencel O . “Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method”. Journal of Environmental Management; 181: 185-92, (2016).
  • [17] Menezes RR, Ferreira HS, Neves GA, Lira HL, Ferreira HC. “Use of granite sawing wastes in the production of ceramic bricks and tiles”. J. Eur. Ceram. Soc., 25(7): 1149–1158, (2005).
  • [18] Lin KL. “Feasibility study of using brick made from municipal solid waste incinerator fly ash slag”. J. Hazard. Mater, 137, (3): 1810–1816, (2006).
  • [19] El-Mahllawy MS. “Characteristics of acid resisting bricks made from quarry residues and waste steel slag”. Construction and Building Materials,22: 1887–1896, (2008).
  • [20] Santos P, Martins C, Júlio E. “Enhancement of the thermal performance of perforated clay brick walls through the addition of industrial nano-crystalline aluminium sludge”. Construction and Building Materials, 101: 227–238, (2015).
  • [21] Cavaco E, Grilo I, Gouveia JP, Júlio E, Neves L. “Mechanical performance of eco-efficient hollow clay bricks incorporating industrial nano-crystalline aluminium sludge”. European Journal of Envıronmental and Cıvıl Engıneerıng, 24:12, 1921-1938, (2018).
  • [22] Cay VV, Sütcü M, Gencel O, Korkut T. “Neutron radiation tests about FeCr slag and natural zeolite loaded brick samples”. Science and Technology of Nuclear Installations, 5, (2014).
  • [23] Zouaoui H, Bouaziz J. “Performance enhancement of the ceramic products by adding the sand, chamotte and waste brick to a porous clay from Bir Mcherga (Tunisia)”. Applied Clay Science, 143: 430-6, (2017).
  • [24] EN 772-13. Methods of test for masonry units- part 13: determination of net and gross dry density of masonry units (except for natural stone) , (2002).
  • [25] EN 771-1. Specification for masonry units – Part 1: Clay masonry units (2015).
  • [26] EN 772-1. Methods of test for masonry units- Part 1: Determination of compressive strength (2015).
  • [27] Gökçe M. and Toklu K., “Ultra-Low Density Foam Concrete Production Using Electrolyzed Water”. Journal of Testing and Evaluation 50. Published ahead of print, 01 September (2021).
  • [28] Zhao Y., Ren B., O’brıen A., O’toole S., “Using alum sludge for clay brick: an Irish investigation”. International Journal of Environmental Studies, Vol.73, 5: 719–730, (2016).
  • [29] The eurocode 6 online. Available online at: http://www.eurocode6.org/ (accessed September (2019).
  • [30] EN 772-18. Methods of test for masonry units - Part 18: Determination of freeze-thaw resistance of calcium silicate masonry units, (2012).
  • [31] TS 825. Thermal insulation requirements for buildings, (2013).
  • [32] Simsek O, Building Material-I (materials science) 6th edition. Seçkin publishing house, ISBN: 9789750269028 Ankara(2021).

Determination of Physical and Mechanical Properties of Porous Blocks (Bricks) Produced with Brick Clay

Year 2024, Volume: 27 Issue: 3, 985 - 994, 25.07.2024
https://doi.org/10.2339/politeknik.1246745

Abstract

Clay brick has recently become a very inevitable product for the construction industry due to the being a sustainable and relatively cheaper material especially with the parallel of developments on foam-forming agents. These bricks have two main problems. These are high unit volume weight and thermal conductivity. In this study, an expansion agent was added to the brick raw material to reduce the unit weight of the brick and to increase the thermal insulation. Samples were produced by adding a mixture of expanding at certain rates. The produced samples were fired at 850, 900, 950, 1000, 1050 and 1100 oC to obtain 100×100×100 mm bricks. The unit volume weight, water absorption, void ratio, compressive strength, compressive strength after freezing-thawing and thermal conductivity properties of the produced bricks were investigated. According to the data obtained in the research, the optimum expansion chemical ratio is 15%. The most suitable firing temperature was determined as 1100 oC. The samples produced with 15% expander at 1100 °C, unit volume weight 744 kg/m3, water absorption 31.83%, void ratio 36.88 %, compressive strength 6.93 MPa, compressive strength after freezing-thawing 5.10 MPa and thermal conductivity λ=0.16 W/mK.

References

  • [1] Polat Arı T. “Investigation of characteristics of lightweight building components produced by getting clay paste expanded with a chemical”. Master Thesis. Niğde Ömer Halisdemir University Institute of Science, 2011 Niğde- Turkey.
  • [2] Bories C, Borredon ME, Vedrenne E, Vilarem G. “Development of eco-friendly porous fired clay bricks using pore-forming agents: A review”. Journal of Environmental Management; 143: 186-196. (2014).
  • [3] Aouba L, Coutand M, Perrin B, Lemercier H. “Predicting thermal performance of fired clay bricks lightened by adding organic matter: Improvement of brick geometry”. Journal of Building Physics, Vol. 38(6) 531–547, (2015).
  • [4] Simsek O, Gökçe M . “Investigation of the expanded ability of Kalecik Ankara clay feature”. Journal of Polytechnic; 20 (3) : 639-645, (2017).
  • [5] Metz B. Intergovernmental panel on climate change. climate change 2001: mitigation. Cambridge (UK): Cambridge University Press, (2001).
  • [6] Muñoz P, Morales MP, Mendívil MA, Juárez MC, Muñoz L. “Using of waste pomace from winery industry to improve thermal insulation of fired clay bricks. Eco-friendly way of building construction”. Construction and Building Materials, 71:181–187, (2014).
  • [7] Wouter P. Energy performance of building: assessment of innovative technologies. ENPER-TEBUC, Final Report, (2004).
  • [8] European Environment Agency. Energy efficiency and energy consumption in the household sector (ENER 022) Assessment published. April, (2012).
  • [9] Zhang L. “Production of bricks from waste materials–A review”. Construction and Building Materials,47: 643– 655, (2013).
  • [10] Sütcü M, Akkurt S. “The use of recycled paper processing residue in making porous brick with reduced thermal conductivity”. Ceram. Int.; 35: 2625–31, (2009).
  • [11] Saiah R, Perrin B, Rigal L. “Improvement of thermal properties of fired clays by introduction of vegetable matter”. Journal of Building Physics, 34 (2): 124–142, (2010).
  • [12] Gürhan G, Simsek O. “Porous clay bricks manufactured with rice husks”. Construction and Building Materials; 40: 390–396, (2013).
  • [13] Faria KCP, Gurgel RF, Holanda JNF. “Recycling of sugarcane bagasse ash waste in the production of clay bricks”. J. Environ. Manage., 101:7–12, (2012).
  • [14] Njeumen Nkayem DE, Mbey JA, BKenne Diffo B, Njopwouo D. “Preliminary study on the use of corn cob as pore forming agent in lightweight clay bricks: Physical and mechanical features”. Journal of Building Engineering, 5: 254–259, (2016).
  • [15] Mohammed MS, Ahmed AE.-SI Osman RM, Khattab I. “Combinations of organic and inorganic wastes for brick production”. Polym. Compos., 35: 174-179, (2014).
  • [16] Sütcü M, Oztürk S, Yalamac E, Gencel O . “Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method”. Journal of Environmental Management; 181: 185-92, (2016).
  • [17] Menezes RR, Ferreira HS, Neves GA, Lira HL, Ferreira HC. “Use of granite sawing wastes in the production of ceramic bricks and tiles”. J. Eur. Ceram. Soc., 25(7): 1149–1158, (2005).
  • [18] Lin KL. “Feasibility study of using brick made from municipal solid waste incinerator fly ash slag”. J. Hazard. Mater, 137, (3): 1810–1816, (2006).
  • [19] El-Mahllawy MS. “Characteristics of acid resisting bricks made from quarry residues and waste steel slag”. Construction and Building Materials,22: 1887–1896, (2008).
  • [20] Santos P, Martins C, Júlio E. “Enhancement of the thermal performance of perforated clay brick walls through the addition of industrial nano-crystalline aluminium sludge”. Construction and Building Materials, 101: 227–238, (2015).
  • [21] Cavaco E, Grilo I, Gouveia JP, Júlio E, Neves L. “Mechanical performance of eco-efficient hollow clay bricks incorporating industrial nano-crystalline aluminium sludge”. European Journal of Envıronmental and Cıvıl Engıneerıng, 24:12, 1921-1938, (2018).
  • [22] Cay VV, Sütcü M, Gencel O, Korkut T. “Neutron radiation tests about FeCr slag and natural zeolite loaded brick samples”. Science and Technology of Nuclear Installations, 5, (2014).
  • [23] Zouaoui H, Bouaziz J. “Performance enhancement of the ceramic products by adding the sand, chamotte and waste brick to a porous clay from Bir Mcherga (Tunisia)”. Applied Clay Science, 143: 430-6, (2017).
  • [24] EN 772-13. Methods of test for masonry units- part 13: determination of net and gross dry density of masonry units (except for natural stone) , (2002).
  • [25] EN 771-1. Specification for masonry units – Part 1: Clay masonry units (2015).
  • [26] EN 772-1. Methods of test for masonry units- Part 1: Determination of compressive strength (2015).
  • [27] Gökçe M. and Toklu K., “Ultra-Low Density Foam Concrete Production Using Electrolyzed Water”. Journal of Testing and Evaluation 50. Published ahead of print, 01 September (2021).
  • [28] Zhao Y., Ren B., O’brıen A., O’toole S., “Using alum sludge for clay brick: an Irish investigation”. International Journal of Environmental Studies, Vol.73, 5: 719–730, (2016).
  • [29] The eurocode 6 online. Available online at: http://www.eurocode6.org/ (accessed September (2019).
  • [30] EN 772-18. Methods of test for masonry units - Part 18: Determination of freeze-thaw resistance of calcium silicate masonry units, (2012).
  • [31] TS 825. Thermal insulation requirements for buildings, (2013).
  • [32] Simsek O, Building Material-I (materials science) 6th edition. Seçkin publishing house, ISBN: 9789750269028 Ankara(2021).
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ahmet Bilgil 0000-0002-4196-0484

Tuba Arı Polat 0000-0001-9125-3449

Osman Şimşek 0000-0003-3842-5541

Ergün Yeşilyurt This is me 0000-0003-2164-9063

Early Pub Date March 27, 2024
Publication Date July 25, 2024
Submission Date February 3, 2023
Published in Issue Year 2024 Volume: 27 Issue: 3

Cite

APA Bilgil, A., Arı Polat, T., Şimşek, O., Yeşilyurt, E. (2024). Determination of Physical and Mechanical Properties of Porous Blocks (Bricks) Produced with Brick Clay. Politeknik Dergisi, 27(3), 985-994. https://doi.org/10.2339/politeknik.1246745
AMA Bilgil A, Arı Polat T, Şimşek O, Yeşilyurt E. Determination of Physical and Mechanical Properties of Porous Blocks (Bricks) Produced with Brick Clay. Politeknik Dergisi. July 2024;27(3):985-994. doi:10.2339/politeknik.1246745
Chicago Bilgil, Ahmet, Tuba Arı Polat, Osman Şimşek, and Ergün Yeşilyurt. “Determination of Physical and Mechanical Properties of Porous Blocks (Bricks) Produced With Brick Clay”. Politeknik Dergisi 27, no. 3 (July 2024): 985-94. https://doi.org/10.2339/politeknik.1246745.
EndNote Bilgil A, Arı Polat T, Şimşek O, Yeşilyurt E (July 1, 2024) Determination of Physical and Mechanical Properties of Porous Blocks (Bricks) Produced with Brick Clay. Politeknik Dergisi 27 3 985–994.
IEEE A. Bilgil, T. Arı Polat, O. Şimşek, and E. Yeşilyurt, “Determination of Physical and Mechanical Properties of Porous Blocks (Bricks) Produced with Brick Clay”, Politeknik Dergisi, vol. 27, no. 3, pp. 985–994, 2024, doi: 10.2339/politeknik.1246745.
ISNAD Bilgil, Ahmet et al. “Determination of Physical and Mechanical Properties of Porous Blocks (Bricks) Produced With Brick Clay”. Politeknik Dergisi 27/3 (July 2024), 985-994. https://doi.org/10.2339/politeknik.1246745.
JAMA Bilgil A, Arı Polat T, Şimşek O, Yeşilyurt E. Determination of Physical and Mechanical Properties of Porous Blocks (Bricks) Produced with Brick Clay. Politeknik Dergisi. 2024;27:985–994.
MLA Bilgil, Ahmet et al. “Determination of Physical and Mechanical Properties of Porous Blocks (Bricks) Produced With Brick Clay”. Politeknik Dergisi, vol. 27, no. 3, 2024, pp. 985-94, doi:10.2339/politeknik.1246745.
Vancouver Bilgil A, Arı Polat T, Şimşek O, Yeşilyurt E. Determination of Physical and Mechanical Properties of Porous Blocks (Bricks) Produced with Brick Clay. Politeknik Dergisi. 2024;27(3):985-94.