Research Article
BibTex RIS Cite

Dron için Hareketli Kol Tasarımında Sistematik İnovasyon Geliştirme

Year 2024, Volume: 27 Issue: 4, 1223 - 1231, 25.09.2024
https://doi.org/10.2339/politeknik.1202113

Abstract

Özellikle savunma sanayi ve arama kurtarma amaçlı tasarlanan dronlarda dezavantaj olarak öne çıkan durum; dronların küçük dar geçitlerden geçip iç ortam görüntülemesini yapamamasıdır. Bu durumda küçük bir geçitten geçirilerek yapılması istenen görüntüleme için ekiplerin farklı boyutlarda dronları yanlarında bulundurmaları ve uygulama alanına göre dron seçimi yapmaları gerekecektir. Bu çalışma ile küçük dar geçitlerden geçebilecek, ortam durumuna göre ve hava şartlarına göre geometrisini küçültüp büyütebilecek dört rotorlu, dik kalkış ve iniş yapabilen bir drona, yeni bir kol tasarımı yaparak, sahadaki bazı dezavantajları ortadan kaldırmak amaçlanmaktadır. Gövdeye eklenen kollar uçuş esnasında dairesel hareket yaparak şekil değiştirme işlevini gerçekleştirecektir. Tasarımda oluşacak teknik çelişkiler için TRIZ kullanılmıştır. Çelişkiler Matrisindeki sonuçlara göre gövde ve kol tasarımında iyileştirmeler yapılarak, gövde şekil değiştirebilir hale getirilmiştir. Gövdenin şekil değiştirme kabiliyeti ile akademik çalışmalarda hangi geometrinin hava şartlarına daha iyi sonuç verdiği ve tek dron ile birçok farklı gövde şeklinin dinamik analizlerinin kısa sürede yapılmasına imkân sağlayacağı öngörülmektedir.

References

  • [1] Radmanesh, M. R., Hassanalian, M., Feghhi, S. A., & NiliAhmadabadi, M. “Numerical Investigation of Azarakhsh MAV.” IMAV2012, Germany, (2012).
  • [2] Stokkermans, T., Veldhuis, L., Soemarwoto, B., Fukari, R., & Eglin, P. “Breakdown of aerodynamic interactions for the lateral rotors on a compound helicopter.” Aerospace Science and Technology, 101, 105845, (2020).
  • [3] Pounds, P., Mahony, R., & Corke, P. “Modelling and control of a quad-rotor robot.” In Proceedings of the 2006 Australasian Conference on Robotics and Automation (pp. 1-10). Australian Robotics and Automation Association (ARAA), (2006).
  • [4] Hassanalian, M., Throneberry, G., & Abdelkefi, A. “Wing shape and dynamic twist design of bio-inspired nano air vehicles for forward flight purposes.” Aerospace Science and Technology, 68, 518-529, (2017).
  • [5] Oktay, T., & Şahin, H. “Trikopterin Özellikleri, Diğer İnsansız Hava Araçları ile Karşılaştırılması ve Özgün Trikopterimiz.” IV. Ulusal Havacılık Teknolojileri Konferansı, (2017).
  • [6] Sinha, P., Esden-Tempski, P., Forrette, C. A., Gibboney, J. K., & Horn, G. M. “Versatile, modular, extensible vtol aerial platform with autonomous flight mode transitions.” In 2012 IEEE aerospace conference (pp. 1-17). IEEE, (2012).
  • [7] Bayraktar Ö. ve Güldaş A. “Quadrotor itme ve tork katsayılarının optimizasyonu ve Matlab/Simulink ile simülasyonu”, Politeknik Dergisi, 23(4): 1197-1204, (2020).
  • [8] Tanaka, S., Asignacion, A., Nakata, T., Suzuki, S., & Liu, H. “Review of Biomimetic Approaches for Drones.” Drones, 6(11), 320, (2022).
  • [9] Mohammed, M., Hazairin, N. A., Al-Zubaidi, S., AK, S., Mustapha, S., & Yusuf, E. “Toward a novel design for coronavirus detection and diagnosis system using IoT based drone technology.” International Journal of Psychosocial Rehabilitation, 24(7), 2287-2295, (2020).
  • [10] James C. Rosser, Jr, MD, Vudatha Vignesh, BSE, Brent A. Terwilliger, PhD, Brett C. Parker, MD “Surgical and Medical Applications of Drones.” A Comprehensive Review, July–September, Volume 22, (2018).
  • [11] Shukla, D., & Komerath, N. “Multirotor drone aerodynamic interaction investigation”. Drones, 2(4), 43, (2018).
  • [12] Musa, S. “Techniques for quadcopter modeling and design: A review.” Journal of unmanned system Technology, 5(3), 66-75, (2018).
  • [13] Floreano, D., & Wood, R. J. “Science, technology and the future of small autonomous drones.” Nature, 521(7553), 460-466, (2015).
  • [14] Joshi, P. M. “Wing analysis of a flapping wing Unmanned aerial vehicle using CFD.” Development, 2(5), (2015).
  • [15] Kardasz, P., Doskocz, J., Hejduk, M., Wiejkut, P., & Zarzycki, H. “Drones and possibilities of their using.” J. Civ. Environ. Eng, 6(3), 1-7, (2016).
  • [16] Dufour, L., Owen, K., Mintchev, S., & Floreano, D. “A drone with insect-inspired folding wings.” In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (pp. 1576-1581). IEEE, (2016).
  • [17] Nicassio, F., Scarselli, G., Pinto, F., Ciampa, F., Iervolino, O., & Meo, M. “Low energy actuation technique of bistable composites for aircraft morphing.” Aerospace Science and Technology, 75, 35-46, (2018).
  • [18] Tsushima, N., Yokozeki, T., Su, W., & Arizono, H. “Geometrically nonlinear static aeroelastic analysis of composite morphing wing with corrugated structures.” Aerospace Science and Technology, 88, 244-257, (2019).
  • [19] Tuna, T., Ovur, S. E., Gokbel, E., & Kumbasar, T. “Design and development of FOLLY: A self-foldable and self-deployable quadcopter.” Aerospace Science and Technology, 100, 105807, (2020).
  • [20] Oktay, T., & Enes, Ö. Z. E. N. “Döner Kanatlı İnsansız Hava Aracının Sistem Tasarımı ve Kontrolü.” Avrupa Bilim ve Teknoloji Dergisi, (27), 318-324, (2021).
  • [21] Kim, J. H., Kim, H., Jung, J. N., Jang, D., & Kwon, H.. “Portable-size Drone Design Using TRIZ Method.” Journal of The Korean Society of Manufacturing Technology Engineers, 26(2):230-237, (2017).
  • [22] Xiu, H., Xu, T., Jones, A. H., Wei, G., & Ren, L. “A reconfigurable quadcopter with foldable rotor arms and a deployable carrier.” In 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), (pp. 1412-1417), IEEE, (2017).
  • [23] Tan, J. X., Effendi, M. S. M., & Radhwan, H. “Analysis of drone remote control to improve end of life (EOL) performance using QFD, TRIZ, and DFMA methods.” In AIP Conference Proceedings, (Vol. 2129, No. 1, p. 020162). AIP Publishing LLC, (2019).
  • [24] Yuan-wu, S. H. I., & Xiao-cheng, Z. H. E. N. G. “Application research on GQFD-TRIZ integration method in police UAV design.” Journal of Graphics, 40(2), 296, (2019).
  • [25] Kumar, R., Wells, J. Z., Jhawar, D., Ranjan, K., & Kumar, M. “Prototype Development and Flight Controller Implementation of the Sliding-Arm Quadcopter.” IFAC-PapersOnLine, 55(37), 542-547, (2022).
  • [26] Nikhilraj, A., Simha, H., & Priyadarshan, H. “Modeling and Control of port dynamics of a tilt-rotor quadcopter.” IFAC-PapersOnLine, 55(1), 746-751, (2022).
  • [27] Ruan, L., Pi, C. H., Su, Y., Yu, P., Cheng, S., & Tsao, T. C. “Control and experiments of a novel tiltable-rotor aerial platform comprising quadcopters and passive hinges.” Mechatronics, 89, 102927, (2023).
  • [28] Ahmad, F., Kumar, P., Patil, P. P., & Kumar, V. “Design and modal analysis of a quadcopter propeller through finite element analysis.” Materials Today: Proceedings, 46, 10322-10328, (2021).
  • [29] Ahmad, F., Kumar, P., Bhandari, A., & Patil, P. P. “Simulation of the quadcopter dynamics with LQR based control.” Materials Today: Proceedings, 24, 326-332, (2020).
  • [30] Singh, R., Kumar, R., Mishra, A., & Agarwal, A. “Structural analysis of quadcopter frame.” Materials Today: Proceedings, 22, 3320-3329, (2020).
  • [31] Bennaceur, S., & Azouz, N. “Modelling and control of a quadrotor with flexible arms.”, 65, 209-231, Alexandria Engineering Journal, (2022).
  • [32] Orloff, M. A., “Grundlagen der klassischen TRIZ: Ein praktisches Lehrbuch des erfinderischen Denkens für Ingenieure”, Entwicklung der TRIZ, 310-338, (2006).
  • [33] Güneş, S. “Ürün Tasarımı ve TRIZ.” Sanat ve Tasarım Dergisi, 1(2), (2008).
  • [34] Altuntaş, S., Dereli, T., YILMAZ, M. K., Ertürk, B., & Demirbaş, A. “Havacılık Sektöründe Bakım Kolaylığı İçin Yaratıcı Problem Çözme Teorisi Uygulamaları.” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 19(55), 211-228, (2017).
  • [35] Ilevbare, I. M., Probert, D., & Phaal, R. “A review of TRIZ, and its benefits and challenges in practice.” Technovation, 33(2-3), 30-37, (2013).

Developing Systematic Innovation in Moving Arm Design for Drone

Year 2024, Volume: 27 Issue: 4, 1223 - 1231, 25.09.2024
https://doi.org/10.2339/politeknik.1202113

Abstract

The situation that stands out as a disadvantage especially in the drone designed for the defense industry and search and rescue; It is the inability of drone to pass through small narrow passages and perform indoor imaging. In this case, the teams will need to have different sizes of drone with them for the desired imaging to be made through a small passage and they will need to choose drone according to the application area. With this study, it is aimed to eliminate some of the disadvantages in the field by designing a new arm for a quadrotor drone that can pass through small narrow passages, shrink or enlarge its geometry according to the ambient conditions and weather conditions. The arms added to the fuselage will perform the deformation function by making circular movements during the flight. TRIZ was used for the technical contradictions that will occur in the design. According to the results in the Contradictions Matrix, improvements were made in the body and arm design, and the body was made deformable. It is predicted that with the deformation ability of the fuselage, which geometry gives better results in weather conditions in academic studies and will enable dynamic analyzes of many different body shapes with a single drone in a short time.

References

  • [1] Radmanesh, M. R., Hassanalian, M., Feghhi, S. A., & NiliAhmadabadi, M. “Numerical Investigation of Azarakhsh MAV.” IMAV2012, Germany, (2012).
  • [2] Stokkermans, T., Veldhuis, L., Soemarwoto, B., Fukari, R., & Eglin, P. “Breakdown of aerodynamic interactions for the lateral rotors on a compound helicopter.” Aerospace Science and Technology, 101, 105845, (2020).
  • [3] Pounds, P., Mahony, R., & Corke, P. “Modelling and control of a quad-rotor robot.” In Proceedings of the 2006 Australasian Conference on Robotics and Automation (pp. 1-10). Australian Robotics and Automation Association (ARAA), (2006).
  • [4] Hassanalian, M., Throneberry, G., & Abdelkefi, A. “Wing shape and dynamic twist design of bio-inspired nano air vehicles for forward flight purposes.” Aerospace Science and Technology, 68, 518-529, (2017).
  • [5] Oktay, T., & Şahin, H. “Trikopterin Özellikleri, Diğer İnsansız Hava Araçları ile Karşılaştırılması ve Özgün Trikopterimiz.” IV. Ulusal Havacılık Teknolojileri Konferansı, (2017).
  • [6] Sinha, P., Esden-Tempski, P., Forrette, C. A., Gibboney, J. K., & Horn, G. M. “Versatile, modular, extensible vtol aerial platform with autonomous flight mode transitions.” In 2012 IEEE aerospace conference (pp. 1-17). IEEE, (2012).
  • [7] Bayraktar Ö. ve Güldaş A. “Quadrotor itme ve tork katsayılarının optimizasyonu ve Matlab/Simulink ile simülasyonu”, Politeknik Dergisi, 23(4): 1197-1204, (2020).
  • [8] Tanaka, S., Asignacion, A., Nakata, T., Suzuki, S., & Liu, H. “Review of Biomimetic Approaches for Drones.” Drones, 6(11), 320, (2022).
  • [9] Mohammed, M., Hazairin, N. A., Al-Zubaidi, S., AK, S., Mustapha, S., & Yusuf, E. “Toward a novel design for coronavirus detection and diagnosis system using IoT based drone technology.” International Journal of Psychosocial Rehabilitation, 24(7), 2287-2295, (2020).
  • [10] James C. Rosser, Jr, MD, Vudatha Vignesh, BSE, Brent A. Terwilliger, PhD, Brett C. Parker, MD “Surgical and Medical Applications of Drones.” A Comprehensive Review, July–September, Volume 22, (2018).
  • [11] Shukla, D., & Komerath, N. “Multirotor drone aerodynamic interaction investigation”. Drones, 2(4), 43, (2018).
  • [12] Musa, S. “Techniques for quadcopter modeling and design: A review.” Journal of unmanned system Technology, 5(3), 66-75, (2018).
  • [13] Floreano, D., & Wood, R. J. “Science, technology and the future of small autonomous drones.” Nature, 521(7553), 460-466, (2015).
  • [14] Joshi, P. M. “Wing analysis of a flapping wing Unmanned aerial vehicle using CFD.” Development, 2(5), (2015).
  • [15] Kardasz, P., Doskocz, J., Hejduk, M., Wiejkut, P., & Zarzycki, H. “Drones and possibilities of their using.” J. Civ. Environ. Eng, 6(3), 1-7, (2016).
  • [16] Dufour, L., Owen, K., Mintchev, S., & Floreano, D. “A drone with insect-inspired folding wings.” In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (pp. 1576-1581). IEEE, (2016).
  • [17] Nicassio, F., Scarselli, G., Pinto, F., Ciampa, F., Iervolino, O., & Meo, M. “Low energy actuation technique of bistable composites for aircraft morphing.” Aerospace Science and Technology, 75, 35-46, (2018).
  • [18] Tsushima, N., Yokozeki, T., Su, W., & Arizono, H. “Geometrically nonlinear static aeroelastic analysis of composite morphing wing with corrugated structures.” Aerospace Science and Technology, 88, 244-257, (2019).
  • [19] Tuna, T., Ovur, S. E., Gokbel, E., & Kumbasar, T. “Design and development of FOLLY: A self-foldable and self-deployable quadcopter.” Aerospace Science and Technology, 100, 105807, (2020).
  • [20] Oktay, T., & Enes, Ö. Z. E. N. “Döner Kanatlı İnsansız Hava Aracının Sistem Tasarımı ve Kontrolü.” Avrupa Bilim ve Teknoloji Dergisi, (27), 318-324, (2021).
  • [21] Kim, J. H., Kim, H., Jung, J. N., Jang, D., & Kwon, H.. “Portable-size Drone Design Using TRIZ Method.” Journal of The Korean Society of Manufacturing Technology Engineers, 26(2):230-237, (2017).
  • [22] Xiu, H., Xu, T., Jones, A. H., Wei, G., & Ren, L. “A reconfigurable quadcopter with foldable rotor arms and a deployable carrier.” In 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), (pp. 1412-1417), IEEE, (2017).
  • [23] Tan, J. X., Effendi, M. S. M., & Radhwan, H. “Analysis of drone remote control to improve end of life (EOL) performance using QFD, TRIZ, and DFMA methods.” In AIP Conference Proceedings, (Vol. 2129, No. 1, p. 020162). AIP Publishing LLC, (2019).
  • [24] Yuan-wu, S. H. I., & Xiao-cheng, Z. H. E. N. G. “Application research on GQFD-TRIZ integration method in police UAV design.” Journal of Graphics, 40(2), 296, (2019).
  • [25] Kumar, R., Wells, J. Z., Jhawar, D., Ranjan, K., & Kumar, M. “Prototype Development and Flight Controller Implementation of the Sliding-Arm Quadcopter.” IFAC-PapersOnLine, 55(37), 542-547, (2022).
  • [26] Nikhilraj, A., Simha, H., & Priyadarshan, H. “Modeling and Control of port dynamics of a tilt-rotor quadcopter.” IFAC-PapersOnLine, 55(1), 746-751, (2022).
  • [27] Ruan, L., Pi, C. H., Su, Y., Yu, P., Cheng, S., & Tsao, T. C. “Control and experiments of a novel tiltable-rotor aerial platform comprising quadcopters and passive hinges.” Mechatronics, 89, 102927, (2023).
  • [28] Ahmad, F., Kumar, P., Patil, P. P., & Kumar, V. “Design and modal analysis of a quadcopter propeller through finite element analysis.” Materials Today: Proceedings, 46, 10322-10328, (2021).
  • [29] Ahmad, F., Kumar, P., Bhandari, A., & Patil, P. P. “Simulation of the quadcopter dynamics with LQR based control.” Materials Today: Proceedings, 24, 326-332, (2020).
  • [30] Singh, R., Kumar, R., Mishra, A., & Agarwal, A. “Structural analysis of quadcopter frame.” Materials Today: Proceedings, 22, 3320-3329, (2020).
  • [31] Bennaceur, S., & Azouz, N. “Modelling and control of a quadrotor with flexible arms.”, 65, 209-231, Alexandria Engineering Journal, (2022).
  • [32] Orloff, M. A., “Grundlagen der klassischen TRIZ: Ein praktisches Lehrbuch des erfinderischen Denkens für Ingenieure”, Entwicklung der TRIZ, 310-338, (2006).
  • [33] Güneş, S. “Ürün Tasarımı ve TRIZ.” Sanat ve Tasarım Dergisi, 1(2), (2008).
  • [34] Altuntaş, S., Dereli, T., YILMAZ, M. K., Ertürk, B., & Demirbaş, A. “Havacılık Sektöründe Bakım Kolaylığı İçin Yaratıcı Problem Çözme Teorisi Uygulamaları.” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 19(55), 211-228, (2017).
  • [35] Ilevbare, I. M., Probert, D., & Phaal, R. “A review of TRIZ, and its benefits and challenges in practice.” Technovation, 33(2-3), 30-37, (2013).
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mustafa Burak Günay 0000-0002-3720-7414

İhsan Korkut 0000-0002-5001-4449

Early Pub Date May 16, 2023
Publication Date September 25, 2024
Submission Date November 12, 2022
Published in Issue Year 2024 Volume: 27 Issue: 4

Cite

APA Günay, M. B., & Korkut, İ. (2024). Dron için Hareketli Kol Tasarımında Sistematik İnovasyon Geliştirme. Politeknik Dergisi, 27(4), 1223-1231. https://doi.org/10.2339/politeknik.1202113
AMA Günay MB, Korkut İ. Dron için Hareketli Kol Tasarımında Sistematik İnovasyon Geliştirme. Politeknik Dergisi. September 2024;27(4):1223-1231. doi:10.2339/politeknik.1202113
Chicago Günay, Mustafa Burak, and İhsan Korkut. “Dron için Hareketli Kol Tasarımında Sistematik İnovasyon Geliştirme”. Politeknik Dergisi 27, no. 4 (September 2024): 1223-31. https://doi.org/10.2339/politeknik.1202113.
EndNote Günay MB, Korkut İ (September 1, 2024) Dron için Hareketli Kol Tasarımında Sistematik İnovasyon Geliştirme. Politeknik Dergisi 27 4 1223–1231.
IEEE M. B. Günay and İ. Korkut, “Dron için Hareketli Kol Tasarımında Sistematik İnovasyon Geliştirme”, Politeknik Dergisi, vol. 27, no. 4, pp. 1223–1231, 2024, doi: 10.2339/politeknik.1202113.
ISNAD Günay, Mustafa Burak - Korkut, İhsan. “Dron için Hareketli Kol Tasarımında Sistematik İnovasyon Geliştirme”. Politeknik Dergisi 27/4 (September 2024), 1223-1231. https://doi.org/10.2339/politeknik.1202113.
JAMA Günay MB, Korkut İ. Dron için Hareketli Kol Tasarımında Sistematik İnovasyon Geliştirme. Politeknik Dergisi. 2024;27:1223–1231.
MLA Günay, Mustafa Burak and İhsan Korkut. “Dron için Hareketli Kol Tasarımında Sistematik İnovasyon Geliştirme”. Politeknik Dergisi, vol. 27, no. 4, 2024, pp. 1223-31, doi:10.2339/politeknik.1202113.
Vancouver Günay MB, Korkut İ. Dron için Hareketli Kol Tasarımında Sistematik İnovasyon Geliştirme. Politeknik Dergisi. 2024;27(4):1223-31.