Research Article
BibTex RIS Cite

Bir Quadrotorun Yörünge Takibinde Doğrusal Ve Doğrusal Olmayan Kontrol Yöntemlerinin Performans Değerlendirmesi

Year 2024, Volume: 27 Issue: 5, 1923 - 1936
https://doi.org/10.2339/politeknik.1219648

Abstract

Farklı tip kontrol yöntemlerinin uygulanması ve değerlendirilmesi için quadrotorlar uygun test sistemleridir. Yapısal basitliği ve kolay uygulanabilirliği ile doğrusal yöntemlerden PID ve LQR denetleyici quadrotorun yörünge kontrolünde kullanılmıştır. Doğrusal yöntemlerin yanı sıra, daha gürbüz kontrol yaklaşımları sunan doğrusal olmayan yöntemlerden geri beslemeli doğrusallaştırma yöntemi, kayan kipli kontrol yöntemi ve geri adımlamalı kontrol yöntemi aynı problem için ele alınmıştır. Elde edilen sonuçlar birlikte değerlendirilerek her iki tip kontrol yaklaşımının quadrotor davranışında etkisi incelenmiştir.

References

  • [1] Chen L., Liu Z., Dang Q., Zhao W. and Wang G., "Robust trajectory tracking control for a quadrotor using recursive sliding mode control and nonlinear extended state observer," Aerospace Science and Technology, 128: 107749, (2022).
  • [2] Liu C., Pan J. and Chang Y., "PID and LQR trajectory tracking control for an unmanned quadrotor helicopter: Experimental studies," in 2016 35th Chinese Control Conference (CCC), 10845-10850, (2016).
  • [3] Parivash F. and Ghasemi A., "Trajectory tracking control for a quadrotor using fuzzy PID control scheme," in 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), 553-558, (2017).
  • [4] Xie H., Cabecinhas D., Cunha R., Silvestre C. and Xu Q., "A trajectory tracking LQR controller for a quadrotor: Design and experimental evaluation," in TENCON 2015 - 2015 IEEE Region 10 Conference, 1-7, (2015).
  • [5] Hamza A., Mohamed A. and El-Badawy A., "Robust H-infinity control for a quadrotor UAV," AIAA SCITECH 2022 Forum, 2033, (2022).
  • [6] Kang T., Yoon K. J., Ha T. and Lee G., "H-infinity control system design for a quad-rotor," Journal of Institute of Control Robotics and Systems, 21(1):14-20, (2015).
  • [7] de Souza A. G. and de Souza L. C. G., "H infinity controller design to a rigid-flexible satellite with two vibration modes," Journal of Physics: Conference Series, 641(1):012030, (2015).
  • [8] Bonna R. and Camino J., "Trajectory tracking control of a quadrotor using feedback linearization," in International Symposium on Dynamic Problems of Mechanics, 1-9, (2015).
  • [9] Nguyen A. T., Xuan-Mung N. and Hong S.-K., "Quadcopter adaptive trajectory tracking control: A new approach via backstepping technique," Applied Sciences, 9(18): 3873, (2019).
  • [10] Xuan-Mung N. and Hong S. K., "Robust backstepping trajectory tracking control of a quadrotor with input saturation via extended state observer," Applied Sciences, 9(23):5184, (2019).
  • [11] Zhao Z., Cao D., Yang J. and Wang H., "High-order sliding mode observer-based trajectory tracking control for a quadrotor UAV with uncertain dynamics," Nonlinear Dynamics, 102(4):2583-2596, (2020).
  • [12] Zhang Y., Chen Z., Sun M. and Zhang X., "Trajectory tracking control of a quadrotor UAV based on sliding mode active disturbance rejection control," Nonlinear Analysis: Modelling and Control, 24(4):545-560, (2019).
  • [13] Wu D., Zhang W., Du H. and Wang X., "Robust adaptive finite‐time trajectory tracking control of a quadrotor aircraft," International Journal of Robust and Nonlinear Control, 31(16):8030-8054, (2021).
  • [14] Mehmood Y., Aslam J., Ullah N., Chowdhury M. S., Techato K., Alzaed A. N., "Adaptive robust trajectory tracking control of multiple quad-rotor UAVs with parametric uncertainties and disturbances," Sensors, 21(7):2401, (2021).
  • [15] Ma D., Xia Y., Shen G., Jia Z., and Li T., "Flatness-based adaptive sliding mode tracking control for a quadrotor with disturbances," Journal of the Franklin Institute, 355(14):6300-6322, (2018).
  • [16] Valencia D. and Kim D., "Trajectory tracking control for multiple quadrotors based on a neurobiological-inspired system," in 2019 Third IEEE International Conference on Robotic Computing (IRC), 465-470, (2019).
  • [17] Selma B., Chouraqui S. and Abouaïssa H., "Optimal trajectory tracking control of unmanned aerial vehicle using ANFIS-IPSO system," International Journal of Information Technology, 12(2):383-395, (2020).
  • [18] Farzaneh M. M. and Tavakolpour-Saleh A., "Adaptive Trajectory Tracking Control of a Quadrotor Based on Iterative Learning Algorithm," Journal of Engineering Technology and Applied Sciences, 5(1):1-12, (2018).
  • [19] Liu H., Li B., Xiao B., Ran D. and Zhang C., "Reinforcement learning‐based tracking control for a quadrotor unmanned aerial vehicle under external disturbances," International Journal of Robust and Nonlinear Control, 33(17):10360-10377, (2023).
  • [20] Bayraktar Ö. and Güldaş A., "Quadrotor itme ve tork katsayılarının optimizasyonu ve Matlab/Simulink ile simülasyonu," Politeknik Dergisi, 23(4):1197-1204, (2020).
  • [21] Elmas E. E. and Alkan M., "Bir İnsansız Hava Aracı Sisteminin Tasarımı, Benzetimi ve Gerçekleştirilmesi," (in tr), Politeknik Dergisi, 26(2):929-940, (2023).
  • [22] Canpolat Tosun D., Işık Y. and Korul H., "LQR control of a quadrotor helicopter," New Developments in Pure and Applied Mathematics, 247-252, (2015).
  • [23] Kizir S., "Denge Kontrol Sisteminin LQR ile Gerçek Zamanlı Durum Geri Beslemeli Kontrolü," (in tr), Politeknik Dergisi, 22(4):1023-1030, (2019).
  • [24] Lopez-Sanchez I. and Moreno-Valenzuela J., "PID control of quadrotor UAVs: A survey," Annual Reviews in Control, 56:100900, (2023).
  • [25] Martins L., Cardeira C. and Oliveira P., "Linear Quadratic Regulator for Trajectory Tracking of a Quadrotor," IFAC-PapersOnLine, 52(12):176-181, (2019).
  • [26] Roy R., Islam M., Sadman N., Mahmud M. A. P., Gupta K. D. and Ahsan M. M., "A Review on Comparative Remarks, Performance Evaluation and Improvement Strategies of Quadrotor Controllers," Technologies, 9(2):37, (2021).

Performance Evaluation of Linear and Nonlinear Control Methods in Trajectory Tracking of a Quadrotor

Year 2024, Volume: 27 Issue: 5, 1923 - 1936
https://doi.org/10.2339/politeknik.1219648

Abstract

Quadrotors are suitable test systems for the application and evaluation of various types of control methods. Due to its structural simplicity and ease of application, linear methods such as PID and LQR controllers are used in the trajectory tracking control of the quadrotor. In addition to linear methods, nonlinear methods are also discussed for the same problem, which provide more robust control approaches, such as feedback linearization method, sliding mode control method, and back-stepping control method. The obtained results are evaluated and the effects of the two types of control approaches on the behavior of the quadrotor are studied.

References

  • [1] Chen L., Liu Z., Dang Q., Zhao W. and Wang G., "Robust trajectory tracking control for a quadrotor using recursive sliding mode control and nonlinear extended state observer," Aerospace Science and Technology, 128: 107749, (2022).
  • [2] Liu C., Pan J. and Chang Y., "PID and LQR trajectory tracking control for an unmanned quadrotor helicopter: Experimental studies," in 2016 35th Chinese Control Conference (CCC), 10845-10850, (2016).
  • [3] Parivash F. and Ghasemi A., "Trajectory tracking control for a quadrotor using fuzzy PID control scheme," in 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), 553-558, (2017).
  • [4] Xie H., Cabecinhas D., Cunha R., Silvestre C. and Xu Q., "A trajectory tracking LQR controller for a quadrotor: Design and experimental evaluation," in TENCON 2015 - 2015 IEEE Region 10 Conference, 1-7, (2015).
  • [5] Hamza A., Mohamed A. and El-Badawy A., "Robust H-infinity control for a quadrotor UAV," AIAA SCITECH 2022 Forum, 2033, (2022).
  • [6] Kang T., Yoon K. J., Ha T. and Lee G., "H-infinity control system design for a quad-rotor," Journal of Institute of Control Robotics and Systems, 21(1):14-20, (2015).
  • [7] de Souza A. G. and de Souza L. C. G., "H infinity controller design to a rigid-flexible satellite with two vibration modes," Journal of Physics: Conference Series, 641(1):012030, (2015).
  • [8] Bonna R. and Camino J., "Trajectory tracking control of a quadrotor using feedback linearization," in International Symposium on Dynamic Problems of Mechanics, 1-9, (2015).
  • [9] Nguyen A. T., Xuan-Mung N. and Hong S.-K., "Quadcopter adaptive trajectory tracking control: A new approach via backstepping technique," Applied Sciences, 9(18): 3873, (2019).
  • [10] Xuan-Mung N. and Hong S. K., "Robust backstepping trajectory tracking control of a quadrotor with input saturation via extended state observer," Applied Sciences, 9(23):5184, (2019).
  • [11] Zhao Z., Cao D., Yang J. and Wang H., "High-order sliding mode observer-based trajectory tracking control for a quadrotor UAV with uncertain dynamics," Nonlinear Dynamics, 102(4):2583-2596, (2020).
  • [12] Zhang Y., Chen Z., Sun M. and Zhang X., "Trajectory tracking control of a quadrotor UAV based on sliding mode active disturbance rejection control," Nonlinear Analysis: Modelling and Control, 24(4):545-560, (2019).
  • [13] Wu D., Zhang W., Du H. and Wang X., "Robust adaptive finite‐time trajectory tracking control of a quadrotor aircraft," International Journal of Robust and Nonlinear Control, 31(16):8030-8054, (2021).
  • [14] Mehmood Y., Aslam J., Ullah N., Chowdhury M. S., Techato K., Alzaed A. N., "Adaptive robust trajectory tracking control of multiple quad-rotor UAVs with parametric uncertainties and disturbances," Sensors, 21(7):2401, (2021).
  • [15] Ma D., Xia Y., Shen G., Jia Z., and Li T., "Flatness-based adaptive sliding mode tracking control for a quadrotor with disturbances," Journal of the Franklin Institute, 355(14):6300-6322, (2018).
  • [16] Valencia D. and Kim D., "Trajectory tracking control for multiple quadrotors based on a neurobiological-inspired system," in 2019 Third IEEE International Conference on Robotic Computing (IRC), 465-470, (2019).
  • [17] Selma B., Chouraqui S. and Abouaïssa H., "Optimal trajectory tracking control of unmanned aerial vehicle using ANFIS-IPSO system," International Journal of Information Technology, 12(2):383-395, (2020).
  • [18] Farzaneh M. M. and Tavakolpour-Saleh A., "Adaptive Trajectory Tracking Control of a Quadrotor Based on Iterative Learning Algorithm," Journal of Engineering Technology and Applied Sciences, 5(1):1-12, (2018).
  • [19] Liu H., Li B., Xiao B., Ran D. and Zhang C., "Reinforcement learning‐based tracking control for a quadrotor unmanned aerial vehicle under external disturbances," International Journal of Robust and Nonlinear Control, 33(17):10360-10377, (2023).
  • [20] Bayraktar Ö. and Güldaş A., "Quadrotor itme ve tork katsayılarının optimizasyonu ve Matlab/Simulink ile simülasyonu," Politeknik Dergisi, 23(4):1197-1204, (2020).
  • [21] Elmas E. E. and Alkan M., "Bir İnsansız Hava Aracı Sisteminin Tasarımı, Benzetimi ve Gerçekleştirilmesi," (in tr), Politeknik Dergisi, 26(2):929-940, (2023).
  • [22] Canpolat Tosun D., Işık Y. and Korul H., "LQR control of a quadrotor helicopter," New Developments in Pure and Applied Mathematics, 247-252, (2015).
  • [23] Kizir S., "Denge Kontrol Sisteminin LQR ile Gerçek Zamanlı Durum Geri Beslemeli Kontrolü," (in tr), Politeknik Dergisi, 22(4):1023-1030, (2019).
  • [24] Lopez-Sanchez I. and Moreno-Valenzuela J., "PID control of quadrotor UAVs: A survey," Annual Reviews in Control, 56:100900, (2023).
  • [25] Martins L., Cardeira C. and Oliveira P., "Linear Quadratic Regulator for Trajectory Tracking of a Quadrotor," IFAC-PapersOnLine, 52(12):176-181, (2019).
  • [26] Roy R., Islam M., Sadman N., Mahmud M. A. P., Gupta K. D. and Ahsan M. M., "A Review on Comparative Remarks, Performance Evaluation and Improvement Strategies of Quadrotor Controllers," Technologies, 9(2):37, (2021).
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Demet Canpolat Tosun 0000-0003-2590-5431

Early Pub Date January 12, 2024
Publication Date
Submission Date December 15, 2022
Published in Issue Year 2024 Volume: 27 Issue: 5

Cite

APA Canpolat Tosun, D. (n.d.). Bir Quadrotorun Yörünge Takibinde Doğrusal Ve Doğrusal Olmayan Kontrol Yöntemlerinin Performans Değerlendirmesi. Politeknik Dergisi, 27(5), 1923-1936. https://doi.org/10.2339/politeknik.1219648
AMA Canpolat Tosun D. Bir Quadrotorun Yörünge Takibinde Doğrusal Ve Doğrusal Olmayan Kontrol Yöntemlerinin Performans Değerlendirmesi. Politeknik Dergisi. 27(5):1923-1936. doi:10.2339/politeknik.1219648
Chicago Canpolat Tosun, Demet. “Bir Quadrotorun Yörünge Takibinde Doğrusal Ve Doğrusal Olmayan Kontrol Yöntemlerinin Performans Değerlendirmesi”. Politeknik Dergisi 27, no. 5 n.d.: 1923-36. https://doi.org/10.2339/politeknik.1219648.
EndNote Canpolat Tosun D Bir Quadrotorun Yörünge Takibinde Doğrusal Ve Doğrusal Olmayan Kontrol Yöntemlerinin Performans Değerlendirmesi. Politeknik Dergisi 27 5 1923–1936.
IEEE D. Canpolat Tosun, “Bir Quadrotorun Yörünge Takibinde Doğrusal Ve Doğrusal Olmayan Kontrol Yöntemlerinin Performans Değerlendirmesi”, Politeknik Dergisi, vol. 27, no. 5, pp. 1923–1936, doi: 10.2339/politeknik.1219648.
ISNAD Canpolat Tosun, Demet. “Bir Quadrotorun Yörünge Takibinde Doğrusal Ve Doğrusal Olmayan Kontrol Yöntemlerinin Performans Değerlendirmesi”. Politeknik Dergisi 27/5 (n.d.), 1923-1936. https://doi.org/10.2339/politeknik.1219648.
JAMA Canpolat Tosun D. Bir Quadrotorun Yörünge Takibinde Doğrusal Ve Doğrusal Olmayan Kontrol Yöntemlerinin Performans Değerlendirmesi. Politeknik Dergisi.;27:1923–1936.
MLA Canpolat Tosun, Demet. “Bir Quadrotorun Yörünge Takibinde Doğrusal Ve Doğrusal Olmayan Kontrol Yöntemlerinin Performans Değerlendirmesi”. Politeknik Dergisi, vol. 27, no. 5, pp. 1923-36, doi:10.2339/politeknik.1219648.
Vancouver Canpolat Tosun D. Bir Quadrotorun Yörünge Takibinde Doğrusal Ve Doğrusal Olmayan Kontrol Yöntemlerinin Performans Değerlendirmesi. Politeknik Dergisi. 27(5):1923-36.