Research Article
BibTex RIS Cite

Negatif Poisson Oranındaki Stent Tasarımının Üç Katmanlı Arter ve Asimetrik Plak Yapısına Göre Sanki-Statik Analizi

Year 2024, Volume: 27 Issue: 5, 1673 - 1680
https://doi.org/10.2339/politeknik.1269273

Abstract

Biyobozunur stent tasarımlarında eğrisel strat formunda açık hücre modelleri yüksek kısalma oranı ve uç açılması nedeniyle yüksek damar hasarı oluşturmaktadır. Arterde oluşan hasarın erken dönemde stent içi daralmaya ve stentin kaymasına sebep olduğundan geometrik yenilikler sayesinde dezavantajlı durumun giderilebileceği belirtilmektedir. Negatif Poisson oranına (NPR) sahip olan stent tasarımlarında minimum oranda kısalma oranı sağlanmaktadır. Bununla birlikte stent genişlemesinde uç açılması oluşmamaktadır. Bu çalışmada, çeper doğrultusunda dört öksetik geometri olarak tasarlanan NPR stent için stent-arter kaplama oranı % 26,3 olarak belirlenmiştir. NPR stentin asimetrik plak içeren üç katmanlı arter yapısı içerisinde dört aşamalı olarak sayısal analizi gerçekleştirilmiştir. PLLA malzeme modelinde yüksek akma dayanımı ve düşük strat kalınlığındaki NPR stent için yapılan analizlerde, kısalma oranı % 12 ve geri daralma oranı % 1,19 olarak elde edilmiştir. Absorb BVS eğrisel tasarımla kıyaslandığında % 10 daha düşük miktarda uzunlamasına yer değiştirme elde edildiğinden, stentin arter duvarındaki konumlanması iyileştirilmiştir.

References

  • [1] Schiavone A., and Zhao L. G., “A computational study of stent performance by considering vessel anisotropy and residual stresses”, Materials Science and Engineering: C, 62: 307-316, (2016a).
  • [2] Holzapfel G. A., Gasser T. C., and Ogden R. W., “A new constitutive framework for arterial wall mechanics and a comparative study of material models”, Journal of elasticity and the physical science of solids, 61(1), 1-48, (2000).
  • [3] Gasser T. C., Ogden R. W., and Holzapfel G. A.,”Hyperelastic modelling of arterial layers with distributed collagen fibre orientations”, Journal of the royal society interface, 3(6): 15-35, (2006).
  • [4] Holzapfel G. A., Sommer G., Gasser C. T., and Regitnig, P., “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling”, American Journal of Physiology-Heart and Circulatory Physiology, 289(5): H2048-H2058, (2005).
  • [5] Schiavone A., Abunassar C., Hossainy S., and Zhao L. G., “Computational analysis of mechanical stress–strain interaction of a bioresorbable scaffold with blood vessel”, Journal of biomechanics, 49(13): 2677-2683, (2016b).
  • [6] Gu L., Zhao S., Muttyam A. K., and Hammel J. M., “The relation between the arterial stress and restenosis rate after coronary stenting”, Journal of Medical Devices, 4(3), (2010).
  • [7] Toong D. W. Y., Toh H. W., Ng J. C. K., Wong P. E. H., Leo H. L., Venkatraman S., and Huang Y., “Bioresorbable polymeric scaffold in cardiovascular applications”, International Journal of Molecular Sciences, 21(10): 3444, (2020).
  • [8] Jinnouchi H., Torii S., Sakamoto A., Kolodgie F. D., Virmani R., and Finn A. V., “Fully bioresorbable vascular scaffolds: lessons learned and future directions”, Nature Reviews Cardiology, 16(5): 286-304, (2019).
  • [9] Reddy S. R. V., Welch T. R., & Nugent A. W. (2021). Biodegradable stent use for congenital heart disease. Progress in Pediatric Cardiology, 61, 101349.
  • [10] Lally C., Dolan F., and Prendergast, P. J., “Cardiovascular stent design and vessel stresses: a finite element analysis”, Journal of biomechanics, 38(8): 1574-1581, (2005).
  • [11] Timmins L. H., Meyer C. A., Moreno M. R., and Moore Jr, J. E., “Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics”, Journal of endovascular therapy, 15(6): 643-654, (2008).
  • [12] Bedoya J., Meyer C. A., Timmins L. H., Moreno M. R., and Moore Jr, J. E., “Effects of stent design parameters on normal artery wall mechanics”, ASME. J Biomech Eng, 128(5): 757–765, (2006).
  • [13] Karimi A., Razaghi R., Shojaei A., and Navidbakhsh M., “An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury”, Biomedical Engineering/Biomedizinische Technik, 60(6): 593-602, (2015).
  • [14] Ballyk P. D., “Intramural stress increases exponentially with stent diameter: a stress threshold for neointimal hyperplasia”, Journal of vascular and interventional radiology, 17(7): 1139-1145, (2016).
  • [15] Holzapfel G. A., Stadler M., and Schulze-Bauer C. A., “A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing”, Annals of Biomedical Engineering, 30(6), 753-767, (2002).
  • [16] Pan C., Han Y., and Lu J., “Structural design of vascular stents: A review”, Micromachines, 12(7): 770, (2021).
  • [17] Zahedmanesh H., and Lally C., “Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis”, Medical & biological engineering & computing, 47(4): 385-393, 2009.
  • [18] Gijsen F. J., Migliavacca F., Schievano S., Socci L., Petrini L., Thury A., and Dubini G., “Simulation of stent deployment in a realistic human coronary artery”, Biomedical engineering online, 7(1): 1-11, (2008).
  • [19] Conway C., McGarry J. P., Edelman E. R., and McHugh P. E., “Numerical simulation of stent angioplasty with predilation: an investigation into lesion constitutive representation and calcification influence”, Annals of biomedical engineering, 45(9): 2244-2252, (2017).
  • [20] Erdoğan İ., Toktaş İ., “Investigation of the effect of geometry inner thickness on new designed auxetic structure”, Politeknik Dergisi, 26(2): 901-912, (2023).
  • [21] Ergene B. and Yalçın B., “Finite element analyzing of the effect of crack on mechanical behavior of honeycomb and re-entrant structures”, Journal of Polytechnic, 23(4): 1015-1025, (2020).
  • [22] Karakoç B., Uzun G., “Ergiyik yığma modelleme yöntemi ile üretilen numunelerde örme yönteminin ve baskı yönünün mukavemete olan etkisi”, Politeknik Dergisi, 1(1):1-12, (2023).
  • [23] Kim Y., Son K. H., & Lee J. W., “Auxetic structures for tissue engineering scaffolds and biomedical devices”, Materials, 14(22). 6821, (2021).
  • [24] Abbaslou M., Hashemi, R., & Etemadi E., “Novel hybrid 3D-printed auxetic vascular stent based on re-entrant and meta-trichiral unit cells: finite element simulation with experimental verifications”, Materials Today Communications, 105742, (2023).
  • [25] Prithipaul P. K., Kokkolaras M., and Pasini D., “Assessment of structural and hemodynamic performance of vascular stents modelled as periodic lattices”, Medical Engineering & Physics, 57: 11-18, (2018).
  • [26] Liu R., Xu S., Luo X., and Liu Z., “Theoretical and numerical analysis of mechanical behaviors of a metamaterial-based shape memory polymer stent”, Polymers, 12(8): 1784, (2020).
  • [27] Masters I. G., and Evans K. E., “Models for the elastic deformation of honeycombs”, Composite structures, 35(4): 403-422, 1996.
  • [28] He R., Zhao L. G., Silberschmidt V. V., Liu Y., and Vogt F., “Finite element evaluation of artery damage in deployment of polymeric stent with pre-and post-dilation”, Biomechanics and modeling in mechanobiology, 19(1): 47-60, (2020).
  • [29] Khalilimeybodi A., Alishzadeh Khoei A., and Sharif-Kashani B., “Future balloon-expandable stents: high or low-strength materials?”, Cardiovascular Engineering and Technology, 11(2): 188-204, (2020).
  • [30] Solidworks, “Introducing Solidworks”, Dassault Systèmes, Waltham, MA, USA, (2022).
  • [31] Lin C., Zhang L., Liu Y., Liu L., and Leng J., “4D printing of personalized shape memory polymer vascular stents with negative Poisson’s ratio structure: A preliminary study”, Science China Technological Sciences, 63(4): 578-588, (2020).
  • [32] Schiavone A., and Zhao L. G., “A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment”, Mechanics of advanced materials and modern processes, 1(1), 1-15, (2015).
  • [33] Pant S., Bressloff N. W., & Limbert G., “Geometry parameterization and multidisciplinary constrained optimization of coronary stents”, Biomechanics and modeling in mechanobiology, 11: 61-82, (2012).
  • [34] Abaqus, “Standard user’s manual”, Dassault Systèmes, Waltham, MA, USA, (2014).
  • [35] Wang Q., Fang G., Zhao Y., Wang G., and Cai T., “Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents”, Journal of the mechanical behavior of biomedical materials, 65: 415-427, (2017).
  • [36] Ribeiro N. S., Folgado J., and Rodrigues H. C., “Surrogate‐based visualization and sensitivity analysis of coronary stent performance: A study on the influence of geometric design”, International journal for numerical methods in biomedical engineering, 34(10), e3125, (2018).
  • [37] Chen C., Xiong Y., Jiang W., Wang Y., Wang Z., & Chen Y., “Experimental and numerical simulation of biodegradable stents with different strut geometries”, Cardiovascular engineering and technology, 11: 36-46, (2020).
  • [38] Zhao S., Gu L., and Froemming S. R., “Effects of arterial strain and stress in the prediction of restenosis risk: Computer modeling of stent trials”, Biomedical Engineering Letters, 2(3): 158-163, (2012).

Quasi-Static Analysis of Stent Design with Negative Poisson’s Ratio by Three Layered Artery and Asymmetrical Plaque

Year 2024, Volume: 27 Issue: 5, 1673 - 1680
https://doi.org/10.2339/politeknik.1269273

Abstract

In biodegradable stent designs, open cell models in curvilinear strat form cause high vessel damage due to high foreshortening rate and dogboning. It is stated that since the damage in the artery causes in-stent restenosis and migration of stent in the early period, the disadvantageous situation can be eliminated thanks to geometric innovations. Stent designs with a Negative Poisson’s ratio provide a minimum foreshortening rate. However, dogboning does not occur in stent expansion. In this study, the stent-artery coverage ratio was determined as 26.3% for the NPR stent, which was designed as four unit cells in the circumferential wall direction. A four-stage numerical analysis of the NPR stent was performed within the three-layered arterial structure including asymmetric plaque. In the analyzes made for the NPR stent with high yield strength and low strut thickness in the PLLA material model, the foreshortening ratio was 12% and the recoil ratio was 1.19%. The positioning of the stent on the arterial wall is improved, as a 10% lower longitudinal displacement is achieved compared to the Absorb BVS curvilinear design.

References

  • [1] Schiavone A., and Zhao L. G., “A computational study of stent performance by considering vessel anisotropy and residual stresses”, Materials Science and Engineering: C, 62: 307-316, (2016a).
  • [2] Holzapfel G. A., Gasser T. C., and Ogden R. W., “A new constitutive framework for arterial wall mechanics and a comparative study of material models”, Journal of elasticity and the physical science of solids, 61(1), 1-48, (2000).
  • [3] Gasser T. C., Ogden R. W., and Holzapfel G. A.,”Hyperelastic modelling of arterial layers with distributed collagen fibre orientations”, Journal of the royal society interface, 3(6): 15-35, (2006).
  • [4] Holzapfel G. A., Sommer G., Gasser C. T., and Regitnig, P., “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling”, American Journal of Physiology-Heart and Circulatory Physiology, 289(5): H2048-H2058, (2005).
  • [5] Schiavone A., Abunassar C., Hossainy S., and Zhao L. G., “Computational analysis of mechanical stress–strain interaction of a bioresorbable scaffold with blood vessel”, Journal of biomechanics, 49(13): 2677-2683, (2016b).
  • [6] Gu L., Zhao S., Muttyam A. K., and Hammel J. M., “The relation between the arterial stress and restenosis rate after coronary stenting”, Journal of Medical Devices, 4(3), (2010).
  • [7] Toong D. W. Y., Toh H. W., Ng J. C. K., Wong P. E. H., Leo H. L., Venkatraman S., and Huang Y., “Bioresorbable polymeric scaffold in cardiovascular applications”, International Journal of Molecular Sciences, 21(10): 3444, (2020).
  • [8] Jinnouchi H., Torii S., Sakamoto A., Kolodgie F. D., Virmani R., and Finn A. V., “Fully bioresorbable vascular scaffolds: lessons learned and future directions”, Nature Reviews Cardiology, 16(5): 286-304, (2019).
  • [9] Reddy S. R. V., Welch T. R., & Nugent A. W. (2021). Biodegradable stent use for congenital heart disease. Progress in Pediatric Cardiology, 61, 101349.
  • [10] Lally C., Dolan F., and Prendergast, P. J., “Cardiovascular stent design and vessel stresses: a finite element analysis”, Journal of biomechanics, 38(8): 1574-1581, (2005).
  • [11] Timmins L. H., Meyer C. A., Moreno M. R., and Moore Jr, J. E., “Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics”, Journal of endovascular therapy, 15(6): 643-654, (2008).
  • [12] Bedoya J., Meyer C. A., Timmins L. H., Moreno M. R., and Moore Jr, J. E., “Effects of stent design parameters on normal artery wall mechanics”, ASME. J Biomech Eng, 128(5): 757–765, (2006).
  • [13] Karimi A., Razaghi R., Shojaei A., and Navidbakhsh M., “An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury”, Biomedical Engineering/Biomedizinische Technik, 60(6): 593-602, (2015).
  • [14] Ballyk P. D., “Intramural stress increases exponentially with stent diameter: a stress threshold for neointimal hyperplasia”, Journal of vascular and interventional radiology, 17(7): 1139-1145, (2016).
  • [15] Holzapfel G. A., Stadler M., and Schulze-Bauer C. A., “A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing”, Annals of Biomedical Engineering, 30(6), 753-767, (2002).
  • [16] Pan C., Han Y., and Lu J., “Structural design of vascular stents: A review”, Micromachines, 12(7): 770, (2021).
  • [17] Zahedmanesh H., and Lally C., “Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis”, Medical & biological engineering & computing, 47(4): 385-393, 2009.
  • [18] Gijsen F. J., Migliavacca F., Schievano S., Socci L., Petrini L., Thury A., and Dubini G., “Simulation of stent deployment in a realistic human coronary artery”, Biomedical engineering online, 7(1): 1-11, (2008).
  • [19] Conway C., McGarry J. P., Edelman E. R., and McHugh P. E., “Numerical simulation of stent angioplasty with predilation: an investigation into lesion constitutive representation and calcification influence”, Annals of biomedical engineering, 45(9): 2244-2252, (2017).
  • [20] Erdoğan İ., Toktaş İ., “Investigation of the effect of geometry inner thickness on new designed auxetic structure”, Politeknik Dergisi, 26(2): 901-912, (2023).
  • [21] Ergene B. and Yalçın B., “Finite element analyzing of the effect of crack on mechanical behavior of honeycomb and re-entrant structures”, Journal of Polytechnic, 23(4): 1015-1025, (2020).
  • [22] Karakoç B., Uzun G., “Ergiyik yığma modelleme yöntemi ile üretilen numunelerde örme yönteminin ve baskı yönünün mukavemete olan etkisi”, Politeknik Dergisi, 1(1):1-12, (2023).
  • [23] Kim Y., Son K. H., & Lee J. W., “Auxetic structures for tissue engineering scaffolds and biomedical devices”, Materials, 14(22). 6821, (2021).
  • [24] Abbaslou M., Hashemi, R., & Etemadi E., “Novel hybrid 3D-printed auxetic vascular stent based on re-entrant and meta-trichiral unit cells: finite element simulation with experimental verifications”, Materials Today Communications, 105742, (2023).
  • [25] Prithipaul P. K., Kokkolaras M., and Pasini D., “Assessment of structural and hemodynamic performance of vascular stents modelled as periodic lattices”, Medical Engineering & Physics, 57: 11-18, (2018).
  • [26] Liu R., Xu S., Luo X., and Liu Z., “Theoretical and numerical analysis of mechanical behaviors of a metamaterial-based shape memory polymer stent”, Polymers, 12(8): 1784, (2020).
  • [27] Masters I. G., and Evans K. E., “Models for the elastic deformation of honeycombs”, Composite structures, 35(4): 403-422, 1996.
  • [28] He R., Zhao L. G., Silberschmidt V. V., Liu Y., and Vogt F., “Finite element evaluation of artery damage in deployment of polymeric stent with pre-and post-dilation”, Biomechanics and modeling in mechanobiology, 19(1): 47-60, (2020).
  • [29] Khalilimeybodi A., Alishzadeh Khoei A., and Sharif-Kashani B., “Future balloon-expandable stents: high or low-strength materials?”, Cardiovascular Engineering and Technology, 11(2): 188-204, (2020).
  • [30] Solidworks, “Introducing Solidworks”, Dassault Systèmes, Waltham, MA, USA, (2022).
  • [31] Lin C., Zhang L., Liu Y., Liu L., and Leng J., “4D printing of personalized shape memory polymer vascular stents with negative Poisson’s ratio structure: A preliminary study”, Science China Technological Sciences, 63(4): 578-588, (2020).
  • [32] Schiavone A., and Zhao L. G., “A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment”, Mechanics of advanced materials and modern processes, 1(1), 1-15, (2015).
  • [33] Pant S., Bressloff N. W., & Limbert G., “Geometry parameterization and multidisciplinary constrained optimization of coronary stents”, Biomechanics and modeling in mechanobiology, 11: 61-82, (2012).
  • [34] Abaqus, “Standard user’s manual”, Dassault Systèmes, Waltham, MA, USA, (2014).
  • [35] Wang Q., Fang G., Zhao Y., Wang G., and Cai T., “Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents”, Journal of the mechanical behavior of biomedical materials, 65: 415-427, (2017).
  • [36] Ribeiro N. S., Folgado J., and Rodrigues H. C., “Surrogate‐based visualization and sensitivity analysis of coronary stent performance: A study on the influence of geometric design”, International journal for numerical methods in biomedical engineering, 34(10), e3125, (2018).
  • [37] Chen C., Xiong Y., Jiang W., Wang Y., Wang Z., & Chen Y., “Experimental and numerical simulation of biodegradable stents with different strut geometries”, Cardiovascular engineering and technology, 11: 36-46, (2020).
  • [38] Zhao S., Gu L., and Froemming S. R., “Effects of arterial strain and stress in the prediction of restenosis risk: Computer modeling of stent trials”, Biomedical Engineering Letters, 2(3): 158-163, (2012).
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Hakan Burçin Erdoğuş 0000-0002-2947-7510

Early Pub Date September 11, 2023
Publication Date
Submission Date March 22, 2023
Published in Issue Year 2024 Volume: 27 Issue: 5

Cite

APA Erdoğuş, H. B. (n.d.). Negatif Poisson Oranındaki Stent Tasarımının Üç Katmanlı Arter ve Asimetrik Plak Yapısına Göre Sanki-Statik Analizi. Politeknik Dergisi, 27(5), 1673-1680. https://doi.org/10.2339/politeknik.1269273
AMA Erdoğuş HB. Negatif Poisson Oranındaki Stent Tasarımının Üç Katmanlı Arter ve Asimetrik Plak Yapısına Göre Sanki-Statik Analizi. Politeknik Dergisi. 27(5):1673-1680. doi:10.2339/politeknik.1269273
Chicago Erdoğuş, Hakan Burçin. “Negatif Poisson Oranındaki Stent Tasarımının Üç Katmanlı Arter Ve Asimetrik Plak Yapısına Göre Sanki-Statik Analizi”. Politeknik Dergisi 27, no. 5 n.d.: 1673-80. https://doi.org/10.2339/politeknik.1269273.
EndNote Erdoğuş HB Negatif Poisson Oranındaki Stent Tasarımının Üç Katmanlı Arter ve Asimetrik Plak Yapısına Göre Sanki-Statik Analizi. Politeknik Dergisi 27 5 1673–1680.
IEEE H. B. Erdoğuş, “Negatif Poisson Oranındaki Stent Tasarımının Üç Katmanlı Arter ve Asimetrik Plak Yapısına Göre Sanki-Statik Analizi”, Politeknik Dergisi, vol. 27, no. 5, pp. 1673–1680, doi: 10.2339/politeknik.1269273.
ISNAD Erdoğuş, Hakan Burçin. “Negatif Poisson Oranındaki Stent Tasarımının Üç Katmanlı Arter Ve Asimetrik Plak Yapısına Göre Sanki-Statik Analizi”. Politeknik Dergisi 27/5 (n.d.), 1673-1680. https://doi.org/10.2339/politeknik.1269273.
JAMA Erdoğuş HB. Negatif Poisson Oranındaki Stent Tasarımının Üç Katmanlı Arter ve Asimetrik Plak Yapısına Göre Sanki-Statik Analizi. Politeknik Dergisi.;27:1673–1680.
MLA Erdoğuş, Hakan Burçin. “Negatif Poisson Oranındaki Stent Tasarımının Üç Katmanlı Arter Ve Asimetrik Plak Yapısına Göre Sanki-Statik Analizi”. Politeknik Dergisi, vol. 27, no. 5, pp. 1673-80, doi:10.2339/politeknik.1269273.
Vancouver Erdoğuş HB. Negatif Poisson Oranındaki Stent Tasarımının Üç Katmanlı Arter ve Asimetrik Plak Yapısına Göre Sanki-Statik Analizi. Politeknik Dergisi. 27(5):1673-80.