Research Article
BibTex RIS Cite

Uç Veri Merkezlerini Optimize Etmek İçin Toroidal K-ary Izgaralarını Uygulama

Year 2024, Volume: 27 Issue: 5, 1743 - 1760
https://doi.org/10.2339/politeknik.1327964

Abstract

IoT dağıtımları katlanarak artıyor ve uç bilgi işlem sistemlerinde büyük bir artışa yol açıyor. Bu tür bir taleple başa çıkabilmek için veri merkezlerinin, uç bilgi işlemin az sayıda fiziksel sunucu ve belirli bir zamanda çalışan trafik akışlarına göre ölçekleme ve ölçeği kaldırma yeteneği gibi özel gereksinimlerine göre özelleştirilmeleri gerekir. Bu bağlamda yapay zeka, mevcut trafiği inceleyerek trafik hacminin artıp artmayacağına ya da geçmiş verileri ve ağın baz referans değerleri gibi diğer faktörleri irdeleyerek tahmin edebildiği için önemli bir rol oynar. Bu çalışmada, küçük veri merkezlerini organize etmek ve optimize etmek için toroidal k-ary ızgaralarına dayanan dinamik bir çerçeve ana hatlarıyla açıklanmakta ve IoT tarafından üretilen trafik akışlarının mevcut ve tahmin edilen kapasitesine göre artmalarına veya azalmalarına izin verilmektedir.

References

  • [1] Agarwal G.K., Magnusson M. and Johanson A., “Edge AI Driven Technology Advancements Paving Way Towards New Capabilities”, International Journal of Innovation and Technology Management, 18(1): 2040005, (2021).
  • [2] Fragkos G., Lebien S. and Tsiropoulou E.E., “Artificial Intelligent Multi-Access Edge Computing Servers Management”, IEEE Access, 8: 171292–171304, (2020).
  • [3] Bi S. et al., “A Survey on Artificial Intelligence Aided Internet-of-Things Technologies in Emerging Smart Libraries”, Sensors, 22(8): 2991, (2022).
  • [4] Alshamrani M., “IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey”, Journal of King Saud University Computer and Information Sciences, 34(8A): 4687–4701, (2022).
  • [5] Rego A., González-Ramírez P.L., Jiménez J.M. and Lloret J., Artificial intelligent system for multimedia services in smart home environments, Cluster Computing, 25: 2085–2105, (2021).
  • [6] Lv Z., “Practical Application of Internet of Things in the Creation of Intelligent Services and Environments”, Frontiers in the Internet of Things, 1: 912388, (2022).
  • [7] Said S. et al., “AIOT-Arch: Furthering Artificial Intelligence in Big Data IoT Applications”, Materials Science and Engineering, 1051: 012008, (2021).
  • [8] Kebande V.R., “Industrial internet of things (IIoT) forensics: The forgotten concept in the race towards industry 4.0”, Forensic Science International: Reports, 5: 100257, (2022).
  • [9] Har L.L. et al., “Revolution of Retail Industry: From Perspective of Retail 1.0 to 4.0”, Procedia Computer Science, 200: 1615–1625, (2022).
  • [10] Bzai J. et al., “Machine Learning-Enabled Internet of Things (IoT): Data”, Applications, and Industry Perspective. Electronics, 11: 2676, (2022).
  • [11] Mansour R.F., “Artificial intelligence based optimization with deep learning model for blockchain enabled intrusion detection in CPS environment”, Scientific Reports, 12: 12937, (2022).
  • [12] Nagajayanthi B., “Decades of Internet of Things Towards Twenty-first Century: A Research-Based Introspective”, Wireless Personal Communications, 133: 3661–3697, (2022).
  • [13] Kraus et al., “Digital Transformation: An Overview of the Current State of the Art of Research”, SAGE Open, 11(3): 1–15, (2021).
  • [14] Wang Z. et al., “A Survey on Recent Advanced Research of CPS Security”, Applied Sciences, 11(3): 3751, (2021).
  • [15] Greer C., Burns M.J., Wollman D. and Griffor E., “Cyber-Physical Systems and Internet of Things”, Special Publication (NIST SP) - 1900-202, National Institute of Standards and Technology, Gaithersburg, MD, USA, 1–61, (2019).
  • [16] Tyagi A.K, and Sreenath N. “Handbook of Research of Internet of Things and Cyber-Physical Systems - An Integrative Approach to an Interconnected Future”, Apple Academic Press, 1st edition, New York City, NY, USA, 1–680, (2022).
  • [17] Bagula A., Ajayi O. and Maluleke H., “Cyber Physical Systems Dependability Using CPS-IOT Monitoring”, Sensors, 21(8): 2761, (2021).
  • [18] Nandhini R.S. and Lakshmanan R.A., “Review of the Integration of Cyber-Physical System and Internet of Things”, International Journal of Advanced Computer Science and Applications (IJASA), 13(4): 459–465, (2022).
  • [19] Tao F., Zhang M. and Nee A., “Digital Twin, Cyber–Physical System, and Internet of Things”, in “Digital Twin Driven Smart Manufacturing”, chapter 12, Academic Press, 1st edition, Cambridge, MA, USA, 243–259, (2019).
  • [20] Singh K.D. and Sood S.K., “5G ready optical fog-assisted cyber-physical system for IoT applications”, IET Cyber-Physical Systems: Theory and Applications, 5(2): 137–144, (2020).
  • [21] Park K.J., Kang K., Wang Q. and Lee D., “Real‐time Internet of things and cyber‐physical systems”, Transactions on Emerging Telecommunication Technologies, 30(4): e3466, (2019).
  • [22] Chen X. et al., “IoT cloud platform for information processing in smart city”, Computational Intelligence, 37(3): 1428–1444, (2021).
  • [23] Moura P., Moreno J.I., López-López G. and Álvarez-Campana M., “IoT Platform for Energy Sustainability in University Campuses”, Sensors, 21(2): 0357, (2021).
  • [24] Humayun M., “Role of Emerging IoT Big Data and Cloud Computing for Real Time Application”, International Journal of Advanced Computer Science and Applications (IJASA), 11(4): 494–506, (2020).
  • [25] Mörth O., Emmanoulidis C., Hafner N. and Schadler M., “Cyber-physical systems for performance monitoring in production intralogistics”, Computer & Industrial Engineering, 142: 106333, (2020).
  • [26] Sabireen H. and Neelanarayanan V., “A Review on Fog Computing: Architecture, Fog with IoT, Algorithms and Research Challenges”, ICT Express, 7(2): 162–176, (2021).
  • [27] Hamdan S., Ayyash M. and Almajali M., “Edge-Computing Architectures for Internet of Things Applications: A Survey”, Sensors, 20(22): 6441, (2020).
  • [28] Varsha R., Nair S.M. and Tyagi A.K., “The Fog/Edge Computing: Challenges, Serious Concerns, and the Road Ahead”, in “Advanced Analytics and Deep Learning Models”, chapter 16, Scrivener Publishing LLC, Beverly, MA, USA, 365–389, (2022).
  • [29] Chegini H., Naha R.K., Mahanti A. and Thulasiraman P., “Process Automation in an IoT–Fog–Cloud Ecosystem: A Survey and Taxonomy”, IoT, 2(1): 92–118, (2021).
  • [30] Román R., López J. and Mambo M., “Mobile Edge Computing, Fog et al.: A Survey and Analysis of Security - Threats and Challenges”, Future Generation Computer Systems, 78: 680–698, (2018).
  • [31] Xiaoyi Z. et al., “IoT driven framework based efficient green energy management in smart cities using multi-objective distributed dispatching algorithm”, Environmental Impact Assessment Review, 88: 106567, (2021).
  • [32] Restrepo L., Aguilar J., Toro M. and Suescún E., “A sustainable-development approach for self-adaptive cyber–physical system's life cycle: A systematic mapping study”, Journal of Systems and Software, 180:, 111010, (2021).
  • [33] Du W. et al., “Fault-Tolerating Edge Computing with Server Redundancy Based on a Variant of Group Degree Centrality”, in: “Lecture Notes in Computer Science”, 12571, Springer, Cham, 198–214, (2020).
  • [34] Liu Y. et al., “A Novel Load Balancing and Low Response Delay Framework for Edge-Cloud Network Based on SDN”, IEEE Internet of Things Journal, 7(7): 5922–5933, (2020).
  • [35] Pereira F. et al., “N.B. Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment”, Sensors, 20(22): 6420, (2020).
  • [36] Marsh-Hunn D. et al., “A Comparative Study in the Standardization of IoT Devices Using Geospatial Web Standards”, IEEE Sensors Journal, 21(4): 5512–5528, (2021).
  • [37] Laroui M. et al., “Edge and fog computing for IoT: A survey on current research activities & future directions”, Computer Communications, 180(C): 210–231, (2021).
  • [38] Nizetic S., Solic P., López-de-Ipiña González-de-Artaza D. and Patrono L., “Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future”, Journal of Cleaner Production, 274: 122877, (2020).
  • [39] Lawal K. and Rafsanjani N. “Trends, benefits, risks, and challenges of IoT implementation in residential and commercial buildings”, Energy and Built Environment, 3(3): 251–266, (2022).
  • [40] Chen S., Jiao L., Liu F. and Wang L. “EdgeDR: An Online Mechanism Design for Demand Response in Edge Clouds”, IEEE Transactions on Parallel and Distributed Systems, 33(2): 343–358, (2022).
  • [41] Huang C. and Shen S.H., “Enabling Service Cache in Edge Clouds”, ACM Transactions on Internet of Things, 2(3): 18, (2021).
  • [42] Wang H. et al., “Error-Compensated Sparsification for Communication-Efficient Decentralized Training in Edge Environment”, IEEE Transactions on Parallel and Distributed Systems, 33(1): 14–25, (2022).
  • [43] Girolami M. et al., “A mobility-based deployment strategy for edge data centers”, Journal of Parallel and Distributed Computing, 164: 133–141, (2022).
  • [44] Maganelli M., Soldati A., Martirano L. and Ramakrishna S. “Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy”, Sustainability, 13(11): 6114, (2022).
  • [45] Abreha H.G., Hayajneh M. and Serhani M.A., “Federated Learning in Edge Computing: A Systematic Survey”, Sensors, 22(2): 450, (2022).
  • [46] Liu J. et al., “Exploring Query Processing on CPU-GPU Integrated Edge Device”, IEEE Transactions on Parallel and Distributed Systems, 33(12): 4057–4070, (2022).
  • [47] Roig P.J., Alcaraz S., Gilly K., Bernad C. and Juiz C., “An efficient architecture for edge data center networks”, in Proceedings of 14th ICT Innovations Conference, 29 September - 1 October 2022, Skopje, North Macedonia, 131–146, (2022).
  • [48] Bhattacharya T. et al., “Capping carbon emission from green data centers”, International Journal of Energy and Environmental Engineering, Springer, (2022).
  • [49] Wang S., Yu Y., Jiang T. and Nie J. “Analysis on carbon emissions efficiency differences and optimization evolution of China’s industrial system: An input-output analysis”, Plos One, 0258147, (2022).
  • [50] Wang J., Li J. and Zhang Q., “Does carbon efficiency improve financial performance? Evidence from Chinese firms”, Energy Economics, 104: 105658, (2021).
  • [51] Kapinya J.B., “Evolutionary Computing Solutions for the de Bruijn Torus Problem”, Master’s Thesis, Vrije Universiteit, Amsterdam, The Netherlands, (2004).
  • [52] Shih Y.K. and Kao S.S., “One-to-one disjoint path covers on k-ary n-cubes”, Theoretical Computer Science, 412: 4513–4530, (2011).
  • [53] Benelli G. et al., “Data Science and Machine Learning in Education”, arXiv, arXiv:2207.09060, (2022).
  • [54] Karaahmetoglu E., Ersöz S., Türker A.K., Ates V. and Inal A.F., “Evaluation of Profession Predictions for Today and the Future with Machine Learning Methods: Emperical Evidence From Turkey”, Journal of Polytechnic, 26(1): 107–124, (2023).
  • [55] Alzubaidi L. et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions”, Journal of Big Data, 8: 53, (2021).
  • [56] Fang W., Love P.E., Luo H. and Ding L., “Computer vision for behaviour-based safety in construction: a review and future directions”, Advanced Engineering Informatics, 043: 100980, (2020).
  • [57] Ben Atitallah S., Dris M., Boulila W. and Ben Ghézala H., “Randomly initialized convolutional neural network for the recognition of COVID-19 using X-ray images”, International Journal on Imaging System Technology, 32: 55–73, (2022).
  • [58] Kiranyaz S. et al., “1D convolutional neural networks and applications: A survey”, Mechanical Systems and Signal Processing, 151: 107398, (2021).
  • [59] Darici M.B., “Performance Analysis of Combination of CNN-based Models with Adaboost Algorithm to Diagnose Covid-19 Disease”, Journal of Polytechnic, 26(1): 179–190, (2023).
  • [60] Farishandi A.A.K., Betancourt O. and Mamivand M., “Deep learning approach for chemistry and processing history prediction from materials microstructure”, Scientific Reports, 12: 4552, (2022).
  • [61] Roig P.J., Alcaraz S., Gilly K. and Juiz C., “Arithmetic study about energy save in switches for some data centre topologies”, Journal of Polytechnic, 25(2): 785–797.
  • [62] Cidrás-Sendra M., “High Frequency Trading via Convolutional Neural Networks”, Bachelor's Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, (2020).
  • [63] Ferreira M.D., Correa D.C., Nonato L.G. and de Mello R.F., “Designing architectures of convolutional neural networks to solve practical problems”, Expert Systems with Applications, 94, 205–217, (2018).
  • [64] Wu J.M.T. et al., “A graph-based CNN-LSTM stock price prediction algorithm with leading indicators”, Multimedia Systems, 00758, (2021).
  • [65] Gizzini A.K. et al., “CNN aided Weighted Interpolation for Channel Estimation in Vehicular Communications”, IEEE Transactions on Vehicular Technology, 3120267, (2021).
  • [66] Du S.S. et al., “How Many Samples are Needed to Estimate a Convolutional Neural Network”, in: “Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018)”, 3-8 December 2018, Montréal, Canada, (2018).
  • [67] Agga A. et al., “CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production”, Electric Power System Research, 208: 107908, (2022).
  • [68] Wang M., “Prediction of the Technology Company's Stock Price through the Deep Learning Method”, Open Journal of Modelling and Simulation, 10(4): 428–440, (2022).
  • [69] Saber M. and El-Kenawy E.S.M., “Design and implementation of accurate frequency estimator depend on deep learning”, International Journal of Engineering & Technology, 9(2): 367–377, (2020).
  • [70] Lockefeer L., Williams D.M. and Fokkink W., “Specification and Verification of TCP extended with the Window Scale Option”, Science of Computer Programming, 118: 3–23, (2014).
  • [71] Fokkink W., “Modelling Distributed Systems”, Springer-Verlag, 2nd edition, Berlin Heidelberg, Germany, (2017).
  • [72] Bergstra J.A. and Klop J.W., “Verification of an alternating bit protocol by means of process algebra protocol”, Lecture Notes in Computer Science, 215: 9–23, (1985).
  • [73] Bergstra J.A. and Middleburg C.A., “Process algebra with strategic interleaving”, Theory of Computing Systems, 63: 488–505, (2019).
  • [74] Groote J.F. and Mousavi M.R., “Modeling and Analysis of Communicating Systems”, 1st edition, MIT Press, Cambridge, MA, USA, (2014).
  • [75] Bergstra J. and Middelburg C.A., “Using Hoare Logic in a Process Algebra Setting”, Fundamenta Informaticae, 179(4): 321–344, (2021).
  • [76] Fokkink W., “Introduction to Process Algebra”, Springer-Verlag, 2nd edition, Berlin Heidelberg, Germany, (2007).
  • [77] Roig P.J., Alcaraz S., Gilly K., Bernad C. and Juiz C. “Formal Algebraic Model of an Edge Data Center with a Redundant Ring Topology”, Network, 3(1): 142–157, (2023).
  • [78] Roig P.J., “Formal Algebraic Modelling for Fog Computing Network Architecture”, PhD Thesis, University of the Balearic Islands, Spain, (2022).

Applying Toroidal k-ary Grids for Optimizing Edge Data Centers

Year 2024, Volume: 27 Issue: 5, 1743 - 1760
https://doi.org/10.2339/politeknik.1327964

Abstract

IoT deployments are growing exponentially, leading to a huge increase in edge computing facilities. In order to cope with such a demand, data centers need to get customized for the specific requirements of edge computing, such as a small number of physical servers and the ability to scale and unscale according to the traffic flows running at a given time. In this context, artificial intelligence plays a key part as it may anticipate when traffic throughput will increase or otherwise by scrutinizing current traffic whilst considering other factors like historical data and network baselines. In this paper, a dynamic framework is outlined based on toroidal k-ary grids so as to organize and optimize small data centers, allowing them to increase or decrease according to the current and predicted capacity of IoT-generated traffic flows.

References

  • [1] Agarwal G.K., Magnusson M. and Johanson A., “Edge AI Driven Technology Advancements Paving Way Towards New Capabilities”, International Journal of Innovation and Technology Management, 18(1): 2040005, (2021).
  • [2] Fragkos G., Lebien S. and Tsiropoulou E.E., “Artificial Intelligent Multi-Access Edge Computing Servers Management”, IEEE Access, 8: 171292–171304, (2020).
  • [3] Bi S. et al., “A Survey on Artificial Intelligence Aided Internet-of-Things Technologies in Emerging Smart Libraries”, Sensors, 22(8): 2991, (2022).
  • [4] Alshamrani M., “IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey”, Journal of King Saud University Computer and Information Sciences, 34(8A): 4687–4701, (2022).
  • [5] Rego A., González-Ramírez P.L., Jiménez J.M. and Lloret J., Artificial intelligent system for multimedia services in smart home environments, Cluster Computing, 25: 2085–2105, (2021).
  • [6] Lv Z., “Practical Application of Internet of Things in the Creation of Intelligent Services and Environments”, Frontiers in the Internet of Things, 1: 912388, (2022).
  • [7] Said S. et al., “AIOT-Arch: Furthering Artificial Intelligence in Big Data IoT Applications”, Materials Science and Engineering, 1051: 012008, (2021).
  • [8] Kebande V.R., “Industrial internet of things (IIoT) forensics: The forgotten concept in the race towards industry 4.0”, Forensic Science International: Reports, 5: 100257, (2022).
  • [9] Har L.L. et al., “Revolution of Retail Industry: From Perspective of Retail 1.0 to 4.0”, Procedia Computer Science, 200: 1615–1625, (2022).
  • [10] Bzai J. et al., “Machine Learning-Enabled Internet of Things (IoT): Data”, Applications, and Industry Perspective. Electronics, 11: 2676, (2022).
  • [11] Mansour R.F., “Artificial intelligence based optimization with deep learning model for blockchain enabled intrusion detection in CPS environment”, Scientific Reports, 12: 12937, (2022).
  • [12] Nagajayanthi B., “Decades of Internet of Things Towards Twenty-first Century: A Research-Based Introspective”, Wireless Personal Communications, 133: 3661–3697, (2022).
  • [13] Kraus et al., “Digital Transformation: An Overview of the Current State of the Art of Research”, SAGE Open, 11(3): 1–15, (2021).
  • [14] Wang Z. et al., “A Survey on Recent Advanced Research of CPS Security”, Applied Sciences, 11(3): 3751, (2021).
  • [15] Greer C., Burns M.J., Wollman D. and Griffor E., “Cyber-Physical Systems and Internet of Things”, Special Publication (NIST SP) - 1900-202, National Institute of Standards and Technology, Gaithersburg, MD, USA, 1–61, (2019).
  • [16] Tyagi A.K, and Sreenath N. “Handbook of Research of Internet of Things and Cyber-Physical Systems - An Integrative Approach to an Interconnected Future”, Apple Academic Press, 1st edition, New York City, NY, USA, 1–680, (2022).
  • [17] Bagula A., Ajayi O. and Maluleke H., “Cyber Physical Systems Dependability Using CPS-IOT Monitoring”, Sensors, 21(8): 2761, (2021).
  • [18] Nandhini R.S. and Lakshmanan R.A., “Review of the Integration of Cyber-Physical System and Internet of Things”, International Journal of Advanced Computer Science and Applications (IJASA), 13(4): 459–465, (2022).
  • [19] Tao F., Zhang M. and Nee A., “Digital Twin, Cyber–Physical System, and Internet of Things”, in “Digital Twin Driven Smart Manufacturing”, chapter 12, Academic Press, 1st edition, Cambridge, MA, USA, 243–259, (2019).
  • [20] Singh K.D. and Sood S.K., “5G ready optical fog-assisted cyber-physical system for IoT applications”, IET Cyber-Physical Systems: Theory and Applications, 5(2): 137–144, (2020).
  • [21] Park K.J., Kang K., Wang Q. and Lee D., “Real‐time Internet of things and cyber‐physical systems”, Transactions on Emerging Telecommunication Technologies, 30(4): e3466, (2019).
  • [22] Chen X. et al., “IoT cloud platform for information processing in smart city”, Computational Intelligence, 37(3): 1428–1444, (2021).
  • [23] Moura P., Moreno J.I., López-López G. and Álvarez-Campana M., “IoT Platform for Energy Sustainability in University Campuses”, Sensors, 21(2): 0357, (2021).
  • [24] Humayun M., “Role of Emerging IoT Big Data and Cloud Computing for Real Time Application”, International Journal of Advanced Computer Science and Applications (IJASA), 11(4): 494–506, (2020).
  • [25] Mörth O., Emmanoulidis C., Hafner N. and Schadler M., “Cyber-physical systems for performance monitoring in production intralogistics”, Computer & Industrial Engineering, 142: 106333, (2020).
  • [26] Sabireen H. and Neelanarayanan V., “A Review on Fog Computing: Architecture, Fog with IoT, Algorithms and Research Challenges”, ICT Express, 7(2): 162–176, (2021).
  • [27] Hamdan S., Ayyash M. and Almajali M., “Edge-Computing Architectures for Internet of Things Applications: A Survey”, Sensors, 20(22): 6441, (2020).
  • [28] Varsha R., Nair S.M. and Tyagi A.K., “The Fog/Edge Computing: Challenges, Serious Concerns, and the Road Ahead”, in “Advanced Analytics and Deep Learning Models”, chapter 16, Scrivener Publishing LLC, Beverly, MA, USA, 365–389, (2022).
  • [29] Chegini H., Naha R.K., Mahanti A. and Thulasiraman P., “Process Automation in an IoT–Fog–Cloud Ecosystem: A Survey and Taxonomy”, IoT, 2(1): 92–118, (2021).
  • [30] Román R., López J. and Mambo M., “Mobile Edge Computing, Fog et al.: A Survey and Analysis of Security - Threats and Challenges”, Future Generation Computer Systems, 78: 680–698, (2018).
  • [31] Xiaoyi Z. et al., “IoT driven framework based efficient green energy management in smart cities using multi-objective distributed dispatching algorithm”, Environmental Impact Assessment Review, 88: 106567, (2021).
  • [32] Restrepo L., Aguilar J., Toro M. and Suescún E., “A sustainable-development approach for self-adaptive cyber–physical system's life cycle: A systematic mapping study”, Journal of Systems and Software, 180:, 111010, (2021).
  • [33] Du W. et al., “Fault-Tolerating Edge Computing with Server Redundancy Based on a Variant of Group Degree Centrality”, in: “Lecture Notes in Computer Science”, 12571, Springer, Cham, 198–214, (2020).
  • [34] Liu Y. et al., “A Novel Load Balancing and Low Response Delay Framework for Edge-Cloud Network Based on SDN”, IEEE Internet of Things Journal, 7(7): 5922–5933, (2020).
  • [35] Pereira F. et al., “N.B. Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment”, Sensors, 20(22): 6420, (2020).
  • [36] Marsh-Hunn D. et al., “A Comparative Study in the Standardization of IoT Devices Using Geospatial Web Standards”, IEEE Sensors Journal, 21(4): 5512–5528, (2021).
  • [37] Laroui M. et al., “Edge and fog computing for IoT: A survey on current research activities & future directions”, Computer Communications, 180(C): 210–231, (2021).
  • [38] Nizetic S., Solic P., López-de-Ipiña González-de-Artaza D. and Patrono L., “Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future”, Journal of Cleaner Production, 274: 122877, (2020).
  • [39] Lawal K. and Rafsanjani N. “Trends, benefits, risks, and challenges of IoT implementation in residential and commercial buildings”, Energy and Built Environment, 3(3): 251–266, (2022).
  • [40] Chen S., Jiao L., Liu F. and Wang L. “EdgeDR: An Online Mechanism Design for Demand Response in Edge Clouds”, IEEE Transactions on Parallel and Distributed Systems, 33(2): 343–358, (2022).
  • [41] Huang C. and Shen S.H., “Enabling Service Cache in Edge Clouds”, ACM Transactions on Internet of Things, 2(3): 18, (2021).
  • [42] Wang H. et al., “Error-Compensated Sparsification for Communication-Efficient Decentralized Training in Edge Environment”, IEEE Transactions on Parallel and Distributed Systems, 33(1): 14–25, (2022).
  • [43] Girolami M. et al., “A mobility-based deployment strategy for edge data centers”, Journal of Parallel and Distributed Computing, 164: 133–141, (2022).
  • [44] Maganelli M., Soldati A., Martirano L. and Ramakrishna S. “Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy”, Sustainability, 13(11): 6114, (2022).
  • [45] Abreha H.G., Hayajneh M. and Serhani M.A., “Federated Learning in Edge Computing: A Systematic Survey”, Sensors, 22(2): 450, (2022).
  • [46] Liu J. et al., “Exploring Query Processing on CPU-GPU Integrated Edge Device”, IEEE Transactions on Parallel and Distributed Systems, 33(12): 4057–4070, (2022).
  • [47] Roig P.J., Alcaraz S., Gilly K., Bernad C. and Juiz C., “An efficient architecture for edge data center networks”, in Proceedings of 14th ICT Innovations Conference, 29 September - 1 October 2022, Skopje, North Macedonia, 131–146, (2022).
  • [48] Bhattacharya T. et al., “Capping carbon emission from green data centers”, International Journal of Energy and Environmental Engineering, Springer, (2022).
  • [49] Wang S., Yu Y., Jiang T. and Nie J. “Analysis on carbon emissions efficiency differences and optimization evolution of China’s industrial system: An input-output analysis”, Plos One, 0258147, (2022).
  • [50] Wang J., Li J. and Zhang Q., “Does carbon efficiency improve financial performance? Evidence from Chinese firms”, Energy Economics, 104: 105658, (2021).
  • [51] Kapinya J.B., “Evolutionary Computing Solutions for the de Bruijn Torus Problem”, Master’s Thesis, Vrije Universiteit, Amsterdam, The Netherlands, (2004).
  • [52] Shih Y.K. and Kao S.S., “One-to-one disjoint path covers on k-ary n-cubes”, Theoretical Computer Science, 412: 4513–4530, (2011).
  • [53] Benelli G. et al., “Data Science and Machine Learning in Education”, arXiv, arXiv:2207.09060, (2022).
  • [54] Karaahmetoglu E., Ersöz S., Türker A.K., Ates V. and Inal A.F., “Evaluation of Profession Predictions for Today and the Future with Machine Learning Methods: Emperical Evidence From Turkey”, Journal of Polytechnic, 26(1): 107–124, (2023).
  • [55] Alzubaidi L. et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions”, Journal of Big Data, 8: 53, (2021).
  • [56] Fang W., Love P.E., Luo H. and Ding L., “Computer vision for behaviour-based safety in construction: a review and future directions”, Advanced Engineering Informatics, 043: 100980, (2020).
  • [57] Ben Atitallah S., Dris M., Boulila W. and Ben Ghézala H., “Randomly initialized convolutional neural network for the recognition of COVID-19 using X-ray images”, International Journal on Imaging System Technology, 32: 55–73, (2022).
  • [58] Kiranyaz S. et al., “1D convolutional neural networks and applications: A survey”, Mechanical Systems and Signal Processing, 151: 107398, (2021).
  • [59] Darici M.B., “Performance Analysis of Combination of CNN-based Models with Adaboost Algorithm to Diagnose Covid-19 Disease”, Journal of Polytechnic, 26(1): 179–190, (2023).
  • [60] Farishandi A.A.K., Betancourt O. and Mamivand M., “Deep learning approach for chemistry and processing history prediction from materials microstructure”, Scientific Reports, 12: 4552, (2022).
  • [61] Roig P.J., Alcaraz S., Gilly K. and Juiz C., “Arithmetic study about energy save in switches for some data centre topologies”, Journal of Polytechnic, 25(2): 785–797.
  • [62] Cidrás-Sendra M., “High Frequency Trading via Convolutional Neural Networks”, Bachelor's Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, (2020).
  • [63] Ferreira M.D., Correa D.C., Nonato L.G. and de Mello R.F., “Designing architectures of convolutional neural networks to solve practical problems”, Expert Systems with Applications, 94, 205–217, (2018).
  • [64] Wu J.M.T. et al., “A graph-based CNN-LSTM stock price prediction algorithm with leading indicators”, Multimedia Systems, 00758, (2021).
  • [65] Gizzini A.K. et al., “CNN aided Weighted Interpolation for Channel Estimation in Vehicular Communications”, IEEE Transactions on Vehicular Technology, 3120267, (2021).
  • [66] Du S.S. et al., “How Many Samples are Needed to Estimate a Convolutional Neural Network”, in: “Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018)”, 3-8 December 2018, Montréal, Canada, (2018).
  • [67] Agga A. et al., “CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production”, Electric Power System Research, 208: 107908, (2022).
  • [68] Wang M., “Prediction of the Technology Company's Stock Price through the Deep Learning Method”, Open Journal of Modelling and Simulation, 10(4): 428–440, (2022).
  • [69] Saber M. and El-Kenawy E.S.M., “Design and implementation of accurate frequency estimator depend on deep learning”, International Journal of Engineering & Technology, 9(2): 367–377, (2020).
  • [70] Lockefeer L., Williams D.M. and Fokkink W., “Specification and Verification of TCP extended with the Window Scale Option”, Science of Computer Programming, 118: 3–23, (2014).
  • [71] Fokkink W., “Modelling Distributed Systems”, Springer-Verlag, 2nd edition, Berlin Heidelberg, Germany, (2017).
  • [72] Bergstra J.A. and Klop J.W., “Verification of an alternating bit protocol by means of process algebra protocol”, Lecture Notes in Computer Science, 215: 9–23, (1985).
  • [73] Bergstra J.A. and Middleburg C.A., “Process algebra with strategic interleaving”, Theory of Computing Systems, 63: 488–505, (2019).
  • [74] Groote J.F. and Mousavi M.R., “Modeling and Analysis of Communicating Systems”, 1st edition, MIT Press, Cambridge, MA, USA, (2014).
  • [75] Bergstra J. and Middelburg C.A., “Using Hoare Logic in a Process Algebra Setting”, Fundamenta Informaticae, 179(4): 321–344, (2021).
  • [76] Fokkink W., “Introduction to Process Algebra”, Springer-Verlag, 2nd edition, Berlin Heidelberg, Germany, (2007).
  • [77] Roig P.J., Alcaraz S., Gilly K., Bernad C. and Juiz C. “Formal Algebraic Model of an Edge Data Center with a Redundant Ring Topology”, Network, 3(1): 142–157, (2023).
  • [78] Roig P.J., “Formal Algebraic Modelling for Fog Computing Network Architecture”, PhD Thesis, University of the Balearic Islands, Spain, (2022).
There are 78 citations in total.

Details

Primary Language English
Subjects Electrical Energy Transmission, Networks and Systems
Journal Section Research Article
Authors

Pedro Juan Roig 0000-0002-8391-8946

Salvador Alcaraz 0000-0003-3701-5583

Katja Gılly 0000-0002-8985-0639

Cristina Bernad 0000-0001-9537-415X

Carlos Juiz 0000-0001-6517-5395

Early Pub Date October 13, 2023
Publication Date
Submission Date July 19, 2023
Published in Issue Year 2024 Volume: 27 Issue: 5

Cite

APA Roig, P. J., Alcaraz, S., Gılly, K., Bernad, C., et al. (n.d.). Applying Toroidal k-ary Grids for Optimizing Edge Data Centers. Politeknik Dergisi, 27(5), 1743-1760. https://doi.org/10.2339/politeknik.1327964
AMA Roig PJ, Alcaraz S, Gılly K, Bernad C, Juiz C. Applying Toroidal k-ary Grids for Optimizing Edge Data Centers. Politeknik Dergisi. 27(5):1743-1760. doi:10.2339/politeknik.1327964
Chicago Roig, Pedro Juan, Salvador Alcaraz, Katja Gılly, Cristina Bernad, and Carlos Juiz. “Applying Toroidal K-Ary Grids for Optimizing Edge Data Centers”. Politeknik Dergisi 27, no. 5 n.d.: 1743-60. https://doi.org/10.2339/politeknik.1327964.
EndNote Roig PJ, Alcaraz S, Gılly K, Bernad C, Juiz C Applying Toroidal k-ary Grids for Optimizing Edge Data Centers. Politeknik Dergisi 27 5 1743–1760.
IEEE P. J. Roig, S. Alcaraz, K. Gılly, C. Bernad, and C. Juiz, “Applying Toroidal k-ary Grids for Optimizing Edge Data Centers”, Politeknik Dergisi, vol. 27, no. 5, pp. 1743–1760, doi: 10.2339/politeknik.1327964.
ISNAD Roig, Pedro Juan et al. “Applying Toroidal K-Ary Grids for Optimizing Edge Data Centers”. Politeknik Dergisi 27/5 (n.d.), 1743-1760. https://doi.org/10.2339/politeknik.1327964.
JAMA Roig PJ, Alcaraz S, Gılly K, Bernad C, Juiz C. Applying Toroidal k-ary Grids for Optimizing Edge Data Centers. Politeknik Dergisi.;27:1743–1760.
MLA Roig, Pedro Juan et al. “Applying Toroidal K-Ary Grids for Optimizing Edge Data Centers”. Politeknik Dergisi, vol. 27, no. 5, pp. 1743-60, doi:10.2339/politeknik.1327964.
Vancouver Roig PJ, Alcaraz S, Gılly K, Bernad C, Juiz C. Applying Toroidal k-ary Grids for Optimizing Edge Data Centers. Politeknik Dergisi. 27(5):1743-60.