Research Article
BibTex RIS Cite

Organize Sanayi Bölgeleri’nin Natech Riskine Göre Değerlendirilmesi: Kocaeli İli İçin Bir Örnek

Year 2024, Volume: 8 Issue: 1, 13 - 30, 28.06.2024
https://doi.org/10.32569/resilience.1379980

Abstract

Afetler günlük hayatın akışını etkileyen doğa olaylarıdır. Doğal afetler sonucunda canlı ve cansız varlıklar için maddi ve manevi olarak ciddi hasarlar ortaya çıkmaktadır. Oluşan hasarların yanı sıra bazı zamanlarda afetler tarafından tetiklenen teknolojik kazalar da meydana gelmektedir. Doğal afetlerin tetiklediği teknolojik kazalar Natech kazaları olarak adlandırılmaktadır. Natech kazaları, afetlerin gerisinde kalmış olsa da Türkiye’de 6 Şubat 2023 tarihinde gerçekleşen Kahramanmaraş merkezli deprem sonrası yeniden gündeme gelmiştir. Deprem sonrası İskenderun yat limanında çıkan yangının söndürülmesi için ciddi uğraşlar verilmiştir. Bu olay Natech kazası olarak kayıtlara geçmiştir. 10 Eylül 2023 tarihinde Libya’da meydana gelen selde barajların yıkılması afetin zararını çok daha ciddi boyutlara taşımıştır. Natech kazaları endüstriyel kuruluşlar için de önemli bir risk faktörü oluşturmaktadır. Bu kapsamda bünyesinde birden fazla sektörde hizmet veren endüstriyel kuruluş bulunan Organize Sanayi Bölgeleri (OSB), Natech kazaları açısından riskli bir konumdadır. Bu çalışmada Kuzey Anadolu fay hattı üzerinde 12 OSB’si bulunan Kocaeli ilinde bir uygulama gerçekleştirilmiştir. Literatür taraması ile belirlenen Natech kriterleri doğrultusunda Kocaeli’nde yer alan OSB’ler Natech riskine göre değerlendirilmiştir. Natech kriterlerinin değerlendirilmesinde Pisagor Bulanık AHP (Analitik Hiyerarşi Yöntemi), OSB’lerde bulunan sektörlerin sıralanmasında ise Pisagor Bulanık TOPSIS (Technique for Order Preference by Similarity) yöntemi kullanılmıştır. Çalışma ortamındaki verilerin deterministik yapıda olmaması ve belirsizliklerin bulunması sebebiyle ele alınan problemde bulanık kümeler ile çözüm elde edilmiştir.

Supporting Institution

YÖK 100/2000 Projesi

References

  • Ak, M. F., & Gul, M. (2019). AHP–TOPSIS integration extended with Pythagorean fuzzy sets for information security risk analysis. Complex and Intelligent Systems, 5(2), 113–126. https://doi.org/10.1007/s40747-018-0087-7
  • Antonioni, G., Landucci, G., Necci, A., Gheorghiu, D., & Cozzani, V. (2015). Quantitative assessment of risk due to NaTech scenarios caused by floods. Reliability Engineering and System Safety, 142, 334–345. https://doi.org/10.1016/j.ress.2015.05.020
  • Busini, V., Marzo, E., Callioni, A., & Rota, R. (2011). Definition of a short-cut methodology for assessing earthquake-related Na-Tech risk. Journal of Hazardous Materials, 192(1), 329–339. https://doi.org/10.1016/j.jhazmat.2011.05.022
  • Campedel, M., Cozzani, V., Garcia-Agreda, A., & Salzano, E. (2008). Extending the quantitative assessment of industrial risks to earthquake effects. Risk Analysis, 28(5), 1231–1246. https://doi.org/10.1111/j.1539-6924.2008.01092.x
  • Chen, G., Huang, K., Zou, M., Yang, Y., & Dong, H. (2019). A methodology for quantitative vulnerability assessment of coupled multi-hazard in Chemical Industrial Park. Journal of Loss Prevention in the Process Industries, 58, 30–41. https://doi.org/10.1016/j.jlp.2019.01.008
  • Cruz, A. M. (2012). Challenges in Natech Risk Reduction. Revista de Ingeniería, 37, 79–86. https://doi.org/10.16924/revinge.37.12
  • Cruz, A. M., & Krausmann, E. (2009). Hazardous-materials releases from offshore oil and gas facilities and emergency response following Hurricanes Katrina and Rita. Journal of Loss Prevention in the Process Industries, 22(1), 59–65. https://doi.org/10.1016/j.jlp.2008.08.007
  • Cruz, A. M., & Suarez-Paba, M. C. (2019). Advances in Natech research: An overview. Progress in Disaster Science Journal, 1, 1–7. https://doi.org/10.1016/j.pdisas.2019.100013
  • Dökmeci, A. H., & Akduman, Ö. (2022). Doğal Olayların Tetiklediği KBRN-p Tehlikesi ve Riski: Türkiye Örneği. Doğal Afetler ve Çevre Dergisi, 8(1), 165–177. https://doi.org/10.21324/dacd.979583
  • Erol, E., Özcan, E., & Eren, T. (2021). Elektrik üretim santrallarında iş güvenliği uzmanı seçiminde hibrit bir karar modeli. Journal of Turkish Operations Management, 1(5), 615–629.
  • Gedikli, T. (2019). Pisagor Bulanık TOPSIS ve Bulanık TOPSIS Yöntemleri ile En Uygun Bakım Stratejisinin Seçilmesi: Bir Gıda İşletmesinde Uygulama. KONYA GIDA VE TARIM ÜNİVERSİTESİ.
  • Girgin, S. (2011). The natech events during the 17 August 1999 Kocaeli earthquake: Aftermath and lessons learned. Natural Hazards and Earth System Science, 11(4), 1129–1140. https://doi.org/10.5194/nhess-11-1129-2011
  • Girgin, S., & Krausmann, E. (2013). RAPID-N: Rapid natech risk assessment and mapping framework. Journal of Loss Prevention in the Process Industries, 26(6), 949–960. https://doi.org/10.1016/j.jlp.2013.10.004
  • Girgin, S., Necci, A., & Krausmann, E. (2019). Dealing with cascading multi-hazard risks in national risk assessment: The case of Natech accidents. International Journal of Disaster Risk Reduction, 35, 1–13. https://doi.org/10.1016/j.ijdrr.2019.101072
  • Gülüm, P., Ayyildiz, E., & Taskin Gümüş, A. (2021). A two level interval valued neutrosophic AHP integrated TOPSIS methodology for post-earthquake fire risk assessment: An application for Istanbul. International Journal of Disaster Risk Reduction, 61, 1–16. https://doi.org/10.1016/j.ijdrr.2021.102330
  • Guo, L., Liang, J., Chen, T., Gao, Y., & Yang, Z. (2023). Scenario-Driven Methodology for Cascading Disasters Risk Assessment of Earthquake on Chemical Industrial Park. Processes, 11(1), 1–12. https://doi.org/10.3390/pr11010032
  • Güven, E., & Eren, T. (2023). İl Afet Risk Azaltma Planı Çerçevesinde ANP Yöntemi İle Kriter Ağırlıklandırma : Kırıkkale İli İçin Bir Örnek. Afet ve Risk Dergisi, 6(2), 401–414. https://doi.org/10.35341/afet.1194357
  • Güven, E., Pınarbaşı, M., Alakaş, H. M., & Eren, T. (2023). Doğal Afetlerin Tetiklediği Teknolojik Kazaların Risk Azaltma Kriterlerinin ANP Yöntemiyle Ağırlıklandırılması. Disaster Science and Engineering.
  • Hwang, C.-L. ;, & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag. https://doi.org/https://doi.org/10.1007/978-3-642-48318-9
  • Krausmann, E., Girgin, S., & Necci, A. (2019). Natural hazard impacts on industry and critical infrastructure: Natech risk drivers and risk management performance indicators. International Journal of Disaster Risk Reduction, 40(February), 101163. https://doi.org/10.1016/j.ijdrr.2019.101163
  • Luo, X., Tzioutzios, D., Tong, Z., & Cruz, A. M. (2022). Find-Natech: A GIS-based spatial management system for Natech events. International Journal of Disaster Risk Reduction, 76, 1–14. https://doi.org/10.1016/j.ijdrr.2022.103028
  • Misuri, A., Casson Moreno, V., Quddus, N., & Cozzani, V. (2019). Lessons learnt from the impact of hurricane Harvey on the chemical and process industry. Reliability Engineering and System Safety, 190, 1–17. https://doi.org/10.1016/j.ress.2019.106521
  • Necci, A., Antonioni, G., Bonvicini, S., & Cozzani, V. (2016). Quantitative assessment of risk due to major accidents triggered by lightning. Reliability Engineering and System Safety, 154, 60–72. https://doi.org/10.1016/j.ress.2016.05.009
  • Olivar, O. J. R., Mayorga, S. Z., Giraldo, F. M., Sánchez-Silva, M., Pinelli, J. P., & Salzano, E. (2020). The effects of extreme winds on atmospheric storage tanks. Reliability Engineering and System Safety, 195, 1–7. https://doi.org/10.1016/j.ress.2019.106686
  • Özcan, E., Ünlüsoy, S., & Eren, T. (2017). Anp Ve TopsisYöntemleri̇yleTürki̇ye Yeni̇lenebi̇li̇rEnerji̇ YatirAlternati̇fleri̇niDeğerlendi̇ri̇lmesi̇. Selcuk University Journal of Engineering ,Science and Technology, 5(2), 204–219. https://doi.org/10.15317/scitech.2017.82
  • Ricci, F., Casson Moreno, V., & Cozzani, V. (2021). A comprehensive analysis of the occurrence of Natech events in the process industry. Process Safety and Environmental Protection, 147, 703–713. https://doi.org/10.1016/j.psep.2020.12.031
  • Salzano, E., Basco, A., Busini, V., Cozzani, V., Marzo, E., Rota, R., & Spadoni, G. (2013). Public awareness promoting new or emerging risks: Industrial accidents triggered by natural hazards (NaTech). Journal of Risk Research, 16(3–4), 469–485. https://doi.org/10.1080/13669877.2012.729529
  • Son, D., & Jung, S. (2018). Flood Risk Assessment for Chemical Storage Tanks. Korean Journal of Hazardous Materials, 5(2), 94–100.
  • Suarez-Paba, M. C., Perreur, M., Munoz, F., & Cruz, A. M. (2019). Systematic literature review and qualitative meta-analysis of Natech research in the past four decades. Safety Science, 116, 58–77. https://doi.org/10.1016/j.ssci.2019.02.033
  • Sun, R., Gong, Z., Gao, G., & Shah, A. A. (2020). Comparative analysis of Multi-Criteria Decision-Making methods for flood disaster risk in the Yangtze River Delta. International Journal of Disaster Risk Reduction, 51, 1–13. https://doi.org/10.1016/j.ijdrr.2020.101768
  • Tezcan, B., & Eren, T. (2022). Orman Yangınına Sebep Olan Kriterlerin Bulanık Ortamda Değerlendirilmesi. Journal of Polytechnic, 1–17. https://doi.org/10.2339/politeknik.1138806
  • Wang, J., & Weng, W. (2023). A simplified methodology for rapid Natech risk assessment of flood-wind-hail multi-hazard scenario. Natural Hazards, 1–23. https://doi.org/10.1007/s11069-022-05770-5
  • Wang, Q., Cai, M., & Wei, G. (2022). A scenario analysis under epistemic uncertainty in Natech accidents: Imprecise probability reasoning in Bayesian Network. Environmental Research Communications, 4(1). https://doi.org/10.1088/2515-7620/ac47d4
  • Yager, R. R. (2013). Pythagorean fuzzy subsets. Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS 2013, 2(x), 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
  • Yazıcı, E., Alakaş, H. M., & Eren, T. (2023). Prioritizing of sectors for establishing a sustainable industrial symbiosis network with Pythagorean fuzzy AHP- Pythagorean fuzzy TOPSIS method: a case of industrial park in Ankara. Environmental Science and Pollution Research, 30(31), 77875–77889. https://doi.org/10.1007/s11356-023-27882-6
  • Yazıcı, E., Özcan, E., Alakaş, H. M., & Eren, T. (2021). Hidroelektrik Santrallarda Bakım Strateji Optimizasyonu için Hiyerarşik Bir Karar Modeli Önerisi. Journal of Polytechnic, 25(3), 933–945. https://doi.org/10.2339/politeknik.862024
  • Yu, J., Cruz, A. M., & Hokugo, A. (2017). Households’ Risk Perception and Behavioral Responses to Natech Accidents. International Journal of Disaster Risk Science, 8(1), 1–15. https://doi.org/10.1007/s13753-017-0116-y

Evaluation of Organized Industrial Zones According to Natech Risk: An Example for Kocaeli Province

Year 2024, Volume: 8 Issue: 1, 13 - 30, 28.06.2024
https://doi.org/10.32569/resilience.1379980

Abstract

Disasters are natural events that affect the flow of daily life. As a result of natural disasters, serious material and moral damages occur for living and non-living beings. In addition to the damages caused, sometimes technological accidents triggered by disasters also occur. Technological accidents triggered by natural disasters are called Natech accidents. Although Natech accidents are behind the disasters, they came to the fore again after the Kahramanmaraş-centered earthquake that took place in Turkey on February 6, 2023. Serious efforts were made to extinguish the fire that broke out in Iskenderun marina after the earthquake. This incident was recorded as a Natech accident. The collapse of the dams in the flood that occurred in Libya on September 10, 2023, carried the damage of the disaster to much more serious levels. Natech accidents also constitute an important risk factor for industrial organizations. In this context, Organized Industrial Zones (OIZ), which have industrial establishments serving in more than one sector, are in a risky position in terms of Natech accidents. In this study, an application was carried out in Kocaeli province, which has 12 OIZs on the Northern Anatolian fault line. OIZs in Kocaeli were evaluated according to Natech risk in line with the Natech criteria determined by the literature review. Pythagoras Fuzzy AHP (Analytical Hierarchy Method) was used in the evaluation of Natech criteria, and Pythagoras Fuzzy TOPSIS (Technique for Order Preference by Similarity) method was used in ranking the sectors in OIZs. Since the data in the working environment is not deterministic and there are uncertainties, the problem was solved with fuzzy sets.

References

  • Ak, M. F., & Gul, M. (2019). AHP–TOPSIS integration extended with Pythagorean fuzzy sets for information security risk analysis. Complex and Intelligent Systems, 5(2), 113–126. https://doi.org/10.1007/s40747-018-0087-7
  • Antonioni, G., Landucci, G., Necci, A., Gheorghiu, D., & Cozzani, V. (2015). Quantitative assessment of risk due to NaTech scenarios caused by floods. Reliability Engineering and System Safety, 142, 334–345. https://doi.org/10.1016/j.ress.2015.05.020
  • Busini, V., Marzo, E., Callioni, A., & Rota, R. (2011). Definition of a short-cut methodology for assessing earthquake-related Na-Tech risk. Journal of Hazardous Materials, 192(1), 329–339. https://doi.org/10.1016/j.jhazmat.2011.05.022
  • Campedel, M., Cozzani, V., Garcia-Agreda, A., & Salzano, E. (2008). Extending the quantitative assessment of industrial risks to earthquake effects. Risk Analysis, 28(5), 1231–1246. https://doi.org/10.1111/j.1539-6924.2008.01092.x
  • Chen, G., Huang, K., Zou, M., Yang, Y., & Dong, H. (2019). A methodology for quantitative vulnerability assessment of coupled multi-hazard in Chemical Industrial Park. Journal of Loss Prevention in the Process Industries, 58, 30–41. https://doi.org/10.1016/j.jlp.2019.01.008
  • Cruz, A. M. (2012). Challenges in Natech Risk Reduction. Revista de Ingeniería, 37, 79–86. https://doi.org/10.16924/revinge.37.12
  • Cruz, A. M., & Krausmann, E. (2009). Hazardous-materials releases from offshore oil and gas facilities and emergency response following Hurricanes Katrina and Rita. Journal of Loss Prevention in the Process Industries, 22(1), 59–65. https://doi.org/10.1016/j.jlp.2008.08.007
  • Cruz, A. M., & Suarez-Paba, M. C. (2019). Advances in Natech research: An overview. Progress in Disaster Science Journal, 1, 1–7. https://doi.org/10.1016/j.pdisas.2019.100013
  • Dökmeci, A. H., & Akduman, Ö. (2022). Doğal Olayların Tetiklediği KBRN-p Tehlikesi ve Riski: Türkiye Örneği. Doğal Afetler ve Çevre Dergisi, 8(1), 165–177. https://doi.org/10.21324/dacd.979583
  • Erol, E., Özcan, E., & Eren, T. (2021). Elektrik üretim santrallarında iş güvenliği uzmanı seçiminde hibrit bir karar modeli. Journal of Turkish Operations Management, 1(5), 615–629.
  • Gedikli, T. (2019). Pisagor Bulanık TOPSIS ve Bulanık TOPSIS Yöntemleri ile En Uygun Bakım Stratejisinin Seçilmesi: Bir Gıda İşletmesinde Uygulama. KONYA GIDA VE TARIM ÜNİVERSİTESİ.
  • Girgin, S. (2011). The natech events during the 17 August 1999 Kocaeli earthquake: Aftermath and lessons learned. Natural Hazards and Earth System Science, 11(4), 1129–1140. https://doi.org/10.5194/nhess-11-1129-2011
  • Girgin, S., & Krausmann, E. (2013). RAPID-N: Rapid natech risk assessment and mapping framework. Journal of Loss Prevention in the Process Industries, 26(6), 949–960. https://doi.org/10.1016/j.jlp.2013.10.004
  • Girgin, S., Necci, A., & Krausmann, E. (2019). Dealing with cascading multi-hazard risks in national risk assessment: The case of Natech accidents. International Journal of Disaster Risk Reduction, 35, 1–13. https://doi.org/10.1016/j.ijdrr.2019.101072
  • Gülüm, P., Ayyildiz, E., & Taskin Gümüş, A. (2021). A two level interval valued neutrosophic AHP integrated TOPSIS methodology for post-earthquake fire risk assessment: An application for Istanbul. International Journal of Disaster Risk Reduction, 61, 1–16. https://doi.org/10.1016/j.ijdrr.2021.102330
  • Guo, L., Liang, J., Chen, T., Gao, Y., & Yang, Z. (2023). Scenario-Driven Methodology for Cascading Disasters Risk Assessment of Earthquake on Chemical Industrial Park. Processes, 11(1), 1–12. https://doi.org/10.3390/pr11010032
  • Güven, E., & Eren, T. (2023). İl Afet Risk Azaltma Planı Çerçevesinde ANP Yöntemi İle Kriter Ağırlıklandırma : Kırıkkale İli İçin Bir Örnek. Afet ve Risk Dergisi, 6(2), 401–414. https://doi.org/10.35341/afet.1194357
  • Güven, E., Pınarbaşı, M., Alakaş, H. M., & Eren, T. (2023). Doğal Afetlerin Tetiklediği Teknolojik Kazaların Risk Azaltma Kriterlerinin ANP Yöntemiyle Ağırlıklandırılması. Disaster Science and Engineering.
  • Hwang, C.-L. ;, & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag. https://doi.org/https://doi.org/10.1007/978-3-642-48318-9
  • Krausmann, E., Girgin, S., & Necci, A. (2019). Natural hazard impacts on industry and critical infrastructure: Natech risk drivers and risk management performance indicators. International Journal of Disaster Risk Reduction, 40(February), 101163. https://doi.org/10.1016/j.ijdrr.2019.101163
  • Luo, X., Tzioutzios, D., Tong, Z., & Cruz, A. M. (2022). Find-Natech: A GIS-based spatial management system for Natech events. International Journal of Disaster Risk Reduction, 76, 1–14. https://doi.org/10.1016/j.ijdrr.2022.103028
  • Misuri, A., Casson Moreno, V., Quddus, N., & Cozzani, V. (2019). Lessons learnt from the impact of hurricane Harvey on the chemical and process industry. Reliability Engineering and System Safety, 190, 1–17. https://doi.org/10.1016/j.ress.2019.106521
  • Necci, A., Antonioni, G., Bonvicini, S., & Cozzani, V. (2016). Quantitative assessment of risk due to major accidents triggered by lightning. Reliability Engineering and System Safety, 154, 60–72. https://doi.org/10.1016/j.ress.2016.05.009
  • Olivar, O. J. R., Mayorga, S. Z., Giraldo, F. M., Sánchez-Silva, M., Pinelli, J. P., & Salzano, E. (2020). The effects of extreme winds on atmospheric storage tanks. Reliability Engineering and System Safety, 195, 1–7. https://doi.org/10.1016/j.ress.2019.106686
  • Özcan, E., Ünlüsoy, S., & Eren, T. (2017). Anp Ve TopsisYöntemleri̇yleTürki̇ye Yeni̇lenebi̇li̇rEnerji̇ YatirAlternati̇fleri̇niDeğerlendi̇ri̇lmesi̇. Selcuk University Journal of Engineering ,Science and Technology, 5(2), 204–219. https://doi.org/10.15317/scitech.2017.82
  • Ricci, F., Casson Moreno, V., & Cozzani, V. (2021). A comprehensive analysis of the occurrence of Natech events in the process industry. Process Safety and Environmental Protection, 147, 703–713. https://doi.org/10.1016/j.psep.2020.12.031
  • Salzano, E., Basco, A., Busini, V., Cozzani, V., Marzo, E., Rota, R., & Spadoni, G. (2013). Public awareness promoting new or emerging risks: Industrial accidents triggered by natural hazards (NaTech). Journal of Risk Research, 16(3–4), 469–485. https://doi.org/10.1080/13669877.2012.729529
  • Son, D., & Jung, S. (2018). Flood Risk Assessment for Chemical Storage Tanks. Korean Journal of Hazardous Materials, 5(2), 94–100.
  • Suarez-Paba, M. C., Perreur, M., Munoz, F., & Cruz, A. M. (2019). Systematic literature review and qualitative meta-analysis of Natech research in the past four decades. Safety Science, 116, 58–77. https://doi.org/10.1016/j.ssci.2019.02.033
  • Sun, R., Gong, Z., Gao, G., & Shah, A. A. (2020). Comparative analysis of Multi-Criteria Decision-Making methods for flood disaster risk in the Yangtze River Delta. International Journal of Disaster Risk Reduction, 51, 1–13. https://doi.org/10.1016/j.ijdrr.2020.101768
  • Tezcan, B., & Eren, T. (2022). Orman Yangınına Sebep Olan Kriterlerin Bulanık Ortamda Değerlendirilmesi. Journal of Polytechnic, 1–17. https://doi.org/10.2339/politeknik.1138806
  • Wang, J., & Weng, W. (2023). A simplified methodology for rapid Natech risk assessment of flood-wind-hail multi-hazard scenario. Natural Hazards, 1–23. https://doi.org/10.1007/s11069-022-05770-5
  • Wang, Q., Cai, M., & Wei, G. (2022). A scenario analysis under epistemic uncertainty in Natech accidents: Imprecise probability reasoning in Bayesian Network. Environmental Research Communications, 4(1). https://doi.org/10.1088/2515-7620/ac47d4
  • Yager, R. R. (2013). Pythagorean fuzzy subsets. Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS 2013, 2(x), 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
  • Yazıcı, E., Alakaş, H. M., & Eren, T. (2023). Prioritizing of sectors for establishing a sustainable industrial symbiosis network with Pythagorean fuzzy AHP- Pythagorean fuzzy TOPSIS method: a case of industrial park in Ankara. Environmental Science and Pollution Research, 30(31), 77875–77889. https://doi.org/10.1007/s11356-023-27882-6
  • Yazıcı, E., Özcan, E., Alakaş, H. M., & Eren, T. (2021). Hidroelektrik Santrallarda Bakım Strateji Optimizasyonu için Hiyerarşik Bir Karar Modeli Önerisi. Journal of Polytechnic, 25(3), 933–945. https://doi.org/10.2339/politeknik.862024
  • Yu, J., Cruz, A. M., & Hokugo, A. (2017). Households’ Risk Perception and Behavioral Responses to Natech Accidents. International Journal of Disaster Risk Science, 8(1), 1–15. https://doi.org/10.1007/s13753-017-0116-y
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Natural Hazards
Journal Section Articles
Authors

Emel Güven 0000-0001-6106-9720

Mehmet Pınarbaşı 0000-0003-3424-2967

Hacı Mehmet Alakaş 0000-0002-9874-7588

Tamer Eren 0000-0001-5282-3138

Publication Date June 28, 2024
Submission Date October 23, 2023
Acceptance Date May 2, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Güven, E., Pınarbaşı, M., Alakaş, H. M., Eren, T. (2024). Organize Sanayi Bölgeleri’nin Natech Riskine Göre Değerlendirilmesi: Kocaeli İli İçin Bir Örnek. Resilience, 8(1), 13-30. https://doi.org/10.32569/resilience.1379980