Review
BibTex RIS Cite

Mikrorobot Yönlendirme Sistemleri

Year 2021, Volume: 2 Issue: 1, 10 - 19, 02.07.2021

Abstract

Minimal invaziv cerrahi ile operasyonlar, geleneksel cerrahi işlemine göre daha küçük kesilerden yapılabilmektedir. Bu durumun, hastanın ameliyat sonrası iyileşme sürecine olumlu etkileri bulunmaktadır. Cerrahi operasyonlarda, cerrahın operasyon yapacağı bölgeye ulaşmakta ve işlem yapmakta zorlandığı kısımlarda, olumlu etkiyi arttırmak için mikrorobotların kullanımı üzerine çalışmalar yapılmaya başlanmıştır. Mikrorobotlar, doku, damar, organ gibi hassas yapılara mikro ölçekte müdahale edebilecek robotik sistemlerdir. Vücut içi uygulamalar için ilaç taşıma, örnek alma (hastalık tespiti), kesme, delme gibi işlemler konusunda kullanılabilecekleri öngörülmektedir. Mikrorobotların temassız ve bir arayüz vasıtasıyla kontrolü ile cerrahi işlemlerin standart bir hale gelmesi sağlanmasıyla cerrahi operasyonlarda komplikasyon riski azalacağı düşünülmektedir. Mikrorobotların temassız yönlendirilmesini sağlayan yönlendirme sistemleri, elektromanyetik sistemler (EMA) olarak adlandırılmıştır. Gelecekte cerrahi operasyonlarda kullanılacağı öngörülen mikrorobotların kontrolü elektromanyetik aktüatör sistemleriyle gerçekleştirilecektir. Bu sebeple, mikrorobotlar ve elektromanyetik aktüatörler hakkındaki güncel ilerlemeler araştırmacıların dikkatini çekmektedir. Bu derleme çalışması, mikrorobotlar ile mikrorobotları yönlendirmekte kullanılan elektromanyetik aktüatör sistemleri hakkında genel bilgi vermektedir.

References

  • [1] Melloul, E., et al. (2016). Guidelines for perioperative care for liver surgery: enhanced recovery after surgery (eras) society recommendations. World J. Surg. 40(10), 2425–2440.
  • [2] Hernández-Vaquero, D., Fernández-Fairen, M., Torres-Perez, A., Santamaría, A. (2012). Minimally invasive surgery versus conventional surgery. A review of the scientific evidence. Rev. Española Cirugía Ortopédica y Traumatol. 56(6), 444–458.
  • [3] Luo, X., Mori, K., Peters, T. M. (2018). Advanced endoscopic navigation: surgical big data, methodology, and applications. Annu. Rev. Biomed. Eng. 20, 221–251. [4] Miller, T. E., Mythen, M. (2014). Successful recovery after major surgery: moving beyond length of stay. Perioper. Med. 3(1), 3–5.
  • [5] Glasgow, R.E., Adamson, K.A., Mulvihill, S.J. (2004). The benefits of a dedicated minimally invasive surgery program to academic general surgery practice. J. Gastrointest. Surg. 8(7), 869–873.
  • [6] Choi, P.J., Oskouian, R.J., Tubbs, R.S. (2018). Telesurgery : past , present , and future. 10(5), 1–5.
  • [7] Zemmar, A., Lozano, A.M., Nelson, B. J. (2020). The rise of robots in surgical environments during COVID-19. Nat. Mach. Intell. 2(10), 566–572.
  • [8] Kim, H., Julius, A.A., Kim, M.J. (2017). Obstacle avoidance for bacteria-powered microrobots, 2nd ed. Elsevier Inc.
  • [9] Sun, B., Wood, G., Miyashita, S. (2020). Milestones for autonomous in vivo microrobots in medical applications. Surgery. 2–5.
  • [10] P. Engineering and F. O. F. Engineering, (1963). Micromanipulators and By.
  • [11] Walckiers, L. (2010). Magnetic measurement with coils and wires. CAS 2009 - Cern Accel. Sch. Magnets, Proc. 357–385.
  • [12] Soto, F., Wang, J., Ahmed, R., Demirci, U. (2020). Medical micro/nanorobots in precision medicine. Adv. Sci. 7(21), 1–34.
  • [13] Sitti, M. et al. (2015). Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE. 103(2), 205–224.
  • [14] Ceylan, H., Giltinan, J., Kozielski, K., Sitti, M. (2017). Mobile microrobots for bioengineering applications. Lab Chip. 17(10), 1705–1724.
  • [15] Sitti, M. (2009). Miniature devices: voyage of the microrobots. Nature. 458(7242), 1121–1122.
  • [16] Li, J. et al. (2018). Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 3(19), 1–12.
  • [17] Li, X., Fukuda, T. (2020). Magnetically guided micromanipulation of magnetic microrobots for accurate creation of artistic patterns in liquid environment. Micromachines. 11(7).
  • [18] Steager, E. B., Selman Sakar, M., Magee, C., Kennedy, M., Cowley, A., Kumar, V. (2013). Automated biomanipulation of single cells using magnetic microrobots. Int. J. Rob. Res. 32(3), 346–359.
  • [19] Metin, S. et al. (2015). Biomedical applications of untethered mobile milli/microrobots. Proc IEEE Inst Electr Electron Eng. 103(2), 205–224.
  • [20] Yesin, K.B., Vollmers, K., Nelson, B.J. (2006). Actuation, sensing, and fabrication for ın vivo. Exp. Robot. 9, 321–330.
  • [21] Jeong, S., Choi, H., Cha, K., Li, J., Park, J.O., Park, S. (2011). Enhanced locomotive and drilling microrobot using precessional and gradient magnetic field. Sensors Actuators, A Phys. 171(2), 429–435.
  • [22] Lee, S. et al. (2018). A capsule-type microrobot with pick-and-drop motion for targeted drug and cell delivery. Adv. Healthc. Mater. 7(9), 1–6.
  • [23] Paek, J., Cho, I., Kim, J. (2015). Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes. Sci. Rep. 5, 1–11.
  • [24] Kim, E. et al. (2020). A magnetically actuated microrobot for targeted neural cell delivery and selective connection of neural networks. Sci. Adv., 6(39), 1–12.
  • [25] Ullrich, F. et al. (2013). Mobility experiments with microrobots for minimally invasive intraocular surgery. Investig. Ophthalmol. Vis. Sci. 54(4), 2853–2863.
  • [26] Jeon, S. et al. (2019). A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft Robot. 6(1), 54–68.
  • [27] Niedert, E. E. et al. (2020). A tumbling magnetic microrobot system for biomedical applications. Micromachines. 11(9).
  • [28] Chen, C., Chen, L., Wang, P., Wu, L.F., Song, T., (2019). Steering of magnetotactic bacterial microrobots by focusing magnetic field for targeted pathogen killing. J. Magn. Magn. Mater. 479(6), 74–83.
  • [29] Pena-Francesch, A., Giltinan, J., Sitti, M., (2019). Multifunctional and biodegradable self-propelled protein motors. Nat. Commun. 10(1), 1–10.
  • [30] Koshinaga, M. et al. (2003). Brain cell transplantation. 日大醫學雜誌.62(8), 380–385.
  • [31] Sitti, M., Wiersma, D.S. (2020). Pros and cons: magnetic versus optical microrobots. Adv. Mater. 32(20).
  • [32] Zhang, H., Hutmacher, D.W., Chollet, F., Poo, A.N., Burdet, E. (2005). Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering. Macromol. Biosci. 5(6), 477–489.
  • [33] Kummer, M.P., Abbott, J.J., Kratochvil, B.E., Borer, R., Sengul, A., Nelson, B.J. (2010). Octomag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 26(6),1006–1017.
  • [34] Kim, S., Lee, S., Lee, J., Nelson, B.J., Zhang, L., Choi, H. (2016). Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci. Rep. 6, 1–9.
  • [35] Jeong, S., Choi, H., Ko, S.Y., Park, J.O., Park, S. (2012). Remote controlled micro-robots using electromagnetic actuation (EMA) systems. Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics. 482–487.
  • [36] Kong, K., Yim, S., Choi, S., Jeon, D. (2012). A Robotic Biopsy Device for Capsule Endoscopy. J. Med. Devices, Trans. ASME. 6(3), 1–9.
  • [37] Joseph, J.V., Oleynikov, D., Rentschler, M., Dumpert, J., Patel, H.R.H. (2008). Microrobot assisted laparoscopic urological surgery in a canine model. J. Urol. 180(5), 2202–2205.
  • [38] Palagi, S., Fischer, P. (2018). Bioinspired microrobots. Nat. Rev. Mater. 3(6), 113–124.
  • [39] Nguyen, V.D., Le, V.H., Kim, C., Han, J., Park, J., Choi, E. (2018). 7th IEEE Int. Conf. on Biomedical Robotics and Biomechatronics (Biorob), IEEE, Piscataway, , pp. 55–60
  • [40] Ghanbari, A., Bahrami, M. (2011). A novel swimming microrobot based on artificial cilia for biomedical applications. J. Intell. Robot. Syst. Theory Appl. 63(3–4), 399–416.
  • [41] Nourmohammadi, H., Keighobadi, J. (2014). Design, modelling and control of a manoeuvrable swimming micro-robot. IFAC. 19(3).
  • [42] Cho, S., Park, S.J., Ko, S.Y., Park, J.O., Park, S., 2012. Development of bacteria-based microrobot using biocompatible poly (ethylene glycol). Biomed. Microdevices. 14(6),1019–1025.
  • [43] Chen, W., Sun, M., Fan, X., Xie, H. (2020). Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release. Appl. Mater. Today. 19, 100583.
  • [44] Yu, C., Choi, H., Park, J., Park, S. (2009). Three-dimensional electromagnetic actuation system for intravascular locomotion. IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS. 1, 540–545.
  • [45] Kwon, J.O., Yang, J.S., Chae, J.B., Chung, S.K. (2014). Micro-object manipulation in a microfabricated channel using an electromagnetically driven microrobot with an acoustically oscillating bubble. Sensors Actuators, A Phys. 215, 77–82.
  • [46] Nam, J., Jeon, S., Kim, S., Jang, G. (2014). Crawling microrobot actuated by a magnetic navigation system in tubular environments. Sensors Actuators, A Phys.209, 100–106.
  • [47] Kee, H., Lee, H., Choi, H., Park, S. (2020). Analysis of drivable area and magnetic force in quadrupole electromagnetic actuation system with movable cores. Meas. J. Int. Meas. Confed. 161, 107878.
  • [48] Zarrouk, A., Belharet, K., Tahri, O. (2020). Vision-based magnetic actuator positioning for wireless control of microrobots. Rob. Auton. Syst. 124.
  • [49] Nakamura, S., Harada, K., Sugita, N., Mitsuishi, M., Kaneko, M. (2011). Electromagnetic drive of microrobot geometrically constrained in blood vessel. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. 6664–6667.
  • [50] Fu, Q., Guo, S., Yamauchi, Y., Hirata, H., Ishihara, H. (2015). A novel hybrid microrobot using rotational magnetic field for medical applications. Biomed. Microdevices. 17(2).
  • [51] Jeon, S. et al. (2019). A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft Robot. 6(1), 54–68.
  • [52] Peyer, K.E., Zhang, L., Nelson, B.J. (2013). Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale. 5(4), 1259–1272.
  • [53] Han, J. et al. (2016). Hybrid-Actuating macrophage-based microrobots for active cancer therapy. Sci. Rep. 6, 1–10.
  • [54] Kim, S. et al. (2013). Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv. Mater. 25(41), 5863–5868.
  • [55] Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J. (2010) Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85.
  • [56] Li, D. et al. (2015). A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy. Biotechnol. Bioeng. 112(8), 1623–1631.
  • [57] Hoang, M.C. et al. (2019). A wireless tattooing capsule endoscope using external electromagnetic actuation and chemical reaction pressure. PLoS One.14(7), 1–17.
  • [58] Jeong, J., Jang, D., Kim, D., Lee, D., Chung, S.K. (2020). Acoustic bubble-based drug manipulation: Carrying, releasing and penetrating for targeted drug delivery using an electromagnetically actuated microrobot. Sensors Actuators, A Phys. 306, 111973.
  • [59] Go, G. et al. (2015). ( 4 Coils ) for 3-D Locomotive Microrobot. IEEE Trans. Magn. 51(4).
  • [60] Choi, K., Jung, G., Jeon, S., Nam, J. (2014). Capsule-type magnetic microrobot actuated by an external magnetic field for selective drug delivery in human blood vessels. IEEE Transactıons on Magnetics. 50(11).
  • [61] Nguyen, P.B. et al. (2018). Real-time microrobot posture recognition via biplane X-ray imaging system for external electromagnetic actuation. Int. J. Comput. Assist. Radiol. Surg.13(11), 1843–1852.
  • [62] Go, G., Du Nguyen, V., Jin, Z., Park, J.O., Park, S. (2018). A thermo-electromagnetically actuated microrobot for the targeted transport of therapeutic agents. Int. J. Control. Autom. Syst. 16(3), 1341–1354.
  • [63] Fu, Q., Zhang, S., Guo, S., Guo, J. (2018). Performance evaluation of amagnetically actuated capsulemicrorobotic system formedical applications. Micromachines. 9(12), 1–16.

Microrobot Guidance Systems

Year 2021, Volume: 2 Issue: 1, 10 - 19, 02.07.2021

Abstract

With minimally invasive surgery, operations can be performed through smaller incisions compared to traditional surgical procedures. This situation has positive effects on the postoperative recovery process of the patient. In surgical operations, studies have begun on the use of microrobots in order to increase the positive effect in the parts where the surgeon has difficulty in reaching the area where the operation will be performed. Microrobots are robotic systems that can interfere with sensitive structures such as tissues, vessels and organs on a micro scale. It is anticipated that they can be used for operations such as drug transport, sampling (disease detection), cutting and drilling for intracorporeal applications. It is envisioned that the risk of complications in surgical operations will be reduced by ensuring that surgical procedures become standard with the control of microrobots without contact and through an interface. Guidance systems that provide contactless guidance of microrobots are called electromagnetic systems (EMA). The control of microrobots that are predicted to be used in surgical operations in the future will be performed by electromagnetic actuator systems. For this reason, current advances in microrobots and electromagnetic actuators are attracting the attention of researchers. This review provides general information about microrobots and electromagnetic actuator systems used to direct microrobots.

References

  • [1] Melloul, E., et al. (2016). Guidelines for perioperative care for liver surgery: enhanced recovery after surgery (eras) society recommendations. World J. Surg. 40(10), 2425–2440.
  • [2] Hernández-Vaquero, D., Fernández-Fairen, M., Torres-Perez, A., Santamaría, A. (2012). Minimally invasive surgery versus conventional surgery. A review of the scientific evidence. Rev. Española Cirugía Ortopédica y Traumatol. 56(6), 444–458.
  • [3] Luo, X., Mori, K., Peters, T. M. (2018). Advanced endoscopic navigation: surgical big data, methodology, and applications. Annu. Rev. Biomed. Eng. 20, 221–251. [4] Miller, T. E., Mythen, M. (2014). Successful recovery after major surgery: moving beyond length of stay. Perioper. Med. 3(1), 3–5.
  • [5] Glasgow, R.E., Adamson, K.A., Mulvihill, S.J. (2004). The benefits of a dedicated minimally invasive surgery program to academic general surgery practice. J. Gastrointest. Surg. 8(7), 869–873.
  • [6] Choi, P.J., Oskouian, R.J., Tubbs, R.S. (2018). Telesurgery : past , present , and future. 10(5), 1–5.
  • [7] Zemmar, A., Lozano, A.M., Nelson, B. J. (2020). The rise of robots in surgical environments during COVID-19. Nat. Mach. Intell. 2(10), 566–572.
  • [8] Kim, H., Julius, A.A., Kim, M.J. (2017). Obstacle avoidance for bacteria-powered microrobots, 2nd ed. Elsevier Inc.
  • [9] Sun, B., Wood, G., Miyashita, S. (2020). Milestones for autonomous in vivo microrobots in medical applications. Surgery. 2–5.
  • [10] P. Engineering and F. O. F. Engineering, (1963). Micromanipulators and By.
  • [11] Walckiers, L. (2010). Magnetic measurement with coils and wires. CAS 2009 - Cern Accel. Sch. Magnets, Proc. 357–385.
  • [12] Soto, F., Wang, J., Ahmed, R., Demirci, U. (2020). Medical micro/nanorobots in precision medicine. Adv. Sci. 7(21), 1–34.
  • [13] Sitti, M. et al. (2015). Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE. 103(2), 205–224.
  • [14] Ceylan, H., Giltinan, J., Kozielski, K., Sitti, M. (2017). Mobile microrobots for bioengineering applications. Lab Chip. 17(10), 1705–1724.
  • [15] Sitti, M. (2009). Miniature devices: voyage of the microrobots. Nature. 458(7242), 1121–1122.
  • [16] Li, J. et al. (2018). Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 3(19), 1–12.
  • [17] Li, X., Fukuda, T. (2020). Magnetically guided micromanipulation of magnetic microrobots for accurate creation of artistic patterns in liquid environment. Micromachines. 11(7).
  • [18] Steager, E. B., Selman Sakar, M., Magee, C., Kennedy, M., Cowley, A., Kumar, V. (2013). Automated biomanipulation of single cells using magnetic microrobots. Int. J. Rob. Res. 32(3), 346–359.
  • [19] Metin, S. et al. (2015). Biomedical applications of untethered mobile milli/microrobots. Proc IEEE Inst Electr Electron Eng. 103(2), 205–224.
  • [20] Yesin, K.B., Vollmers, K., Nelson, B.J. (2006). Actuation, sensing, and fabrication for ın vivo. Exp. Robot. 9, 321–330.
  • [21] Jeong, S., Choi, H., Cha, K., Li, J., Park, J.O., Park, S. (2011). Enhanced locomotive and drilling microrobot using precessional and gradient magnetic field. Sensors Actuators, A Phys. 171(2), 429–435.
  • [22] Lee, S. et al. (2018). A capsule-type microrobot with pick-and-drop motion for targeted drug and cell delivery. Adv. Healthc. Mater. 7(9), 1–6.
  • [23] Paek, J., Cho, I., Kim, J. (2015). Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes. Sci. Rep. 5, 1–11.
  • [24] Kim, E. et al. (2020). A magnetically actuated microrobot for targeted neural cell delivery and selective connection of neural networks. Sci. Adv., 6(39), 1–12.
  • [25] Ullrich, F. et al. (2013). Mobility experiments with microrobots for minimally invasive intraocular surgery. Investig. Ophthalmol. Vis. Sci. 54(4), 2853–2863.
  • [26] Jeon, S. et al. (2019). A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft Robot. 6(1), 54–68.
  • [27] Niedert, E. E. et al. (2020). A tumbling magnetic microrobot system for biomedical applications. Micromachines. 11(9).
  • [28] Chen, C., Chen, L., Wang, P., Wu, L.F., Song, T., (2019). Steering of magnetotactic bacterial microrobots by focusing magnetic field for targeted pathogen killing. J. Magn. Magn. Mater. 479(6), 74–83.
  • [29] Pena-Francesch, A., Giltinan, J., Sitti, M., (2019). Multifunctional and biodegradable self-propelled protein motors. Nat. Commun. 10(1), 1–10.
  • [30] Koshinaga, M. et al. (2003). Brain cell transplantation. 日大醫學雜誌.62(8), 380–385.
  • [31] Sitti, M., Wiersma, D.S. (2020). Pros and cons: magnetic versus optical microrobots. Adv. Mater. 32(20).
  • [32] Zhang, H., Hutmacher, D.W., Chollet, F., Poo, A.N., Burdet, E. (2005). Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering. Macromol. Biosci. 5(6), 477–489.
  • [33] Kummer, M.P., Abbott, J.J., Kratochvil, B.E., Borer, R., Sengul, A., Nelson, B.J. (2010). Octomag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 26(6),1006–1017.
  • [34] Kim, S., Lee, S., Lee, J., Nelson, B.J., Zhang, L., Choi, H. (2016). Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci. Rep. 6, 1–9.
  • [35] Jeong, S., Choi, H., Ko, S.Y., Park, J.O., Park, S. (2012). Remote controlled micro-robots using electromagnetic actuation (EMA) systems. Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics. 482–487.
  • [36] Kong, K., Yim, S., Choi, S., Jeon, D. (2012). A Robotic Biopsy Device for Capsule Endoscopy. J. Med. Devices, Trans. ASME. 6(3), 1–9.
  • [37] Joseph, J.V., Oleynikov, D., Rentschler, M., Dumpert, J., Patel, H.R.H. (2008). Microrobot assisted laparoscopic urological surgery in a canine model. J. Urol. 180(5), 2202–2205.
  • [38] Palagi, S., Fischer, P. (2018). Bioinspired microrobots. Nat. Rev. Mater. 3(6), 113–124.
  • [39] Nguyen, V.D., Le, V.H., Kim, C., Han, J., Park, J., Choi, E. (2018). 7th IEEE Int. Conf. on Biomedical Robotics and Biomechatronics (Biorob), IEEE, Piscataway, , pp. 55–60
  • [40] Ghanbari, A., Bahrami, M. (2011). A novel swimming microrobot based on artificial cilia for biomedical applications. J. Intell. Robot. Syst. Theory Appl. 63(3–4), 399–416.
  • [41] Nourmohammadi, H., Keighobadi, J. (2014). Design, modelling and control of a manoeuvrable swimming micro-robot. IFAC. 19(3).
  • [42] Cho, S., Park, S.J., Ko, S.Y., Park, J.O., Park, S., 2012. Development of bacteria-based microrobot using biocompatible poly (ethylene glycol). Biomed. Microdevices. 14(6),1019–1025.
  • [43] Chen, W., Sun, M., Fan, X., Xie, H. (2020). Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release. Appl. Mater. Today. 19, 100583.
  • [44] Yu, C., Choi, H., Park, J., Park, S. (2009). Three-dimensional electromagnetic actuation system for intravascular locomotion. IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS. 1, 540–545.
  • [45] Kwon, J.O., Yang, J.S., Chae, J.B., Chung, S.K. (2014). Micro-object manipulation in a microfabricated channel using an electromagnetically driven microrobot with an acoustically oscillating bubble. Sensors Actuators, A Phys. 215, 77–82.
  • [46] Nam, J., Jeon, S., Kim, S., Jang, G. (2014). Crawling microrobot actuated by a magnetic navigation system in tubular environments. Sensors Actuators, A Phys.209, 100–106.
  • [47] Kee, H., Lee, H., Choi, H., Park, S. (2020). Analysis of drivable area and magnetic force in quadrupole electromagnetic actuation system with movable cores. Meas. J. Int. Meas. Confed. 161, 107878.
  • [48] Zarrouk, A., Belharet, K., Tahri, O. (2020). Vision-based magnetic actuator positioning for wireless control of microrobots. Rob. Auton. Syst. 124.
  • [49] Nakamura, S., Harada, K., Sugita, N., Mitsuishi, M., Kaneko, M. (2011). Electromagnetic drive of microrobot geometrically constrained in blood vessel. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. 6664–6667.
  • [50] Fu, Q., Guo, S., Yamauchi, Y., Hirata, H., Ishihara, H. (2015). A novel hybrid microrobot using rotational magnetic field for medical applications. Biomed. Microdevices. 17(2).
  • [51] Jeon, S. et al. (2019). A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft Robot. 6(1), 54–68.
  • [52] Peyer, K.E., Zhang, L., Nelson, B.J. (2013). Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale. 5(4), 1259–1272.
  • [53] Han, J. et al. (2016). Hybrid-Actuating macrophage-based microrobots for active cancer therapy. Sci. Rep. 6, 1–10.
  • [54] Kim, S. et al. (2013). Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv. Mater. 25(41), 5863–5868.
  • [55] Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J. (2010) Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85.
  • [56] Li, D. et al. (2015). A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy. Biotechnol. Bioeng. 112(8), 1623–1631.
  • [57] Hoang, M.C. et al. (2019). A wireless tattooing capsule endoscope using external electromagnetic actuation and chemical reaction pressure. PLoS One.14(7), 1–17.
  • [58] Jeong, J., Jang, D., Kim, D., Lee, D., Chung, S.K. (2020). Acoustic bubble-based drug manipulation: Carrying, releasing and penetrating for targeted drug delivery using an electromagnetically actuated microrobot. Sensors Actuators, A Phys. 306, 111973.
  • [59] Go, G. et al. (2015). ( 4 Coils ) for 3-D Locomotive Microrobot. IEEE Trans. Magn. 51(4).
  • [60] Choi, K., Jung, G., Jeon, S., Nam, J. (2014). Capsule-type magnetic microrobot actuated by an external magnetic field for selective drug delivery in human blood vessels. IEEE Transactıons on Magnetics. 50(11).
  • [61] Nguyen, P.B. et al. (2018). Real-time microrobot posture recognition via biplane X-ray imaging system for external electromagnetic actuation. Int. J. Comput. Assist. Radiol. Surg.13(11), 1843–1852.
  • [62] Go, G., Du Nguyen, V., Jin, Z., Park, J.O., Park, S. (2018). A thermo-electromagnetically actuated microrobot for the targeted transport of therapeutic agents. Int. J. Control. Autom. Syst. 16(3), 1341–1354.
  • [63] Fu, Q., Zhang, S., Guo, S., Guo, J. (2018). Performance evaluation of amagnetically actuated capsulemicrorobotic system formedical applications. Micromachines. 9(12), 1–16.
There are 62 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

Özge Akbülbül 0000-0002-7892-6458

Mert Şener 0000-0002-9343-948X

Oğuz Gürses 0000-0002-2755-3452

Aysun Baltacı 0000-0002-9049-1610

Publication Date July 2, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

APA Akbülbül, Ö., Şener, M., Gürses, O., Baltacı, A. (2021). Mikrorobot Yönlendirme Sistemleri. Research Journal of Biomedical and Biotechnology, 2(1), 10-19.
AMA Akbülbül Ö, Şener M, Gürses O, Baltacı A. Mikrorobot Yönlendirme Sistemleri. RJBB. July 2021;2(1):10-19.
Chicago Akbülbül, Özge, Mert Şener, Oğuz Gürses, and Aysun Baltacı. “Mikrorobot Yönlendirme Sistemleri”. Research Journal of Biomedical and Biotechnology 2, no. 1 (July 2021): 10-19.
EndNote Akbülbül Ö, Şener M, Gürses O, Baltacı A (July 1, 2021) Mikrorobot Yönlendirme Sistemleri. Research Journal of Biomedical and Biotechnology 2 1 10–19.
IEEE Ö. Akbülbül, M. Şener, O. Gürses, and A. Baltacı, “Mikrorobot Yönlendirme Sistemleri”, RJBB, vol. 2, no. 1, pp. 10–19, 2021.
ISNAD Akbülbül, Özge et al. “Mikrorobot Yönlendirme Sistemleri”. Research Journal of Biomedical and Biotechnology 2/1 (July 2021), 10-19.
JAMA Akbülbül Ö, Şener M, Gürses O, Baltacı A. Mikrorobot Yönlendirme Sistemleri. RJBB. 2021;2:10–19.
MLA Akbülbül, Özge et al. “Mikrorobot Yönlendirme Sistemleri”. Research Journal of Biomedical and Biotechnology, vol. 2, no. 1, 2021, pp. 10-19.
Vancouver Akbülbül Ö, Şener M, Gürses O, Baltacı A. Mikrorobot Yönlendirme Sistemleri. RJBB. 2021;2(1):10-9.