Research Article
BibTex RIS Cite

A fixed point theorem without a Picard operator

Year 2021, Volume: 4 Issue: 3, 127 - 129, 30.09.2021
https://doi.org/10.53006/rna.904880

Abstract

In this short note, we propose a fixed point theorem in the setting of a Banach space without using a Picard operator.

References

  • [1] I. Gornicki and B.E.Rhoades, A general fixed point theorem for involutions, Indian J. Pure Appl. Math. 27(1) 1996, 13-23.
  • [2] V. Berinde, Contract ¸ii generalizate ¸ si aplicat ¸ii , Editura Club Press 22, Baia Mare, 1997.
  • [3] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint no. 3(1993), 3-9.
  • [4] V. Berinde, Sequences of operators and fixed points in quasimetric spaces , Stud. Univ. ”Babe¸ s-Bolyai”, Math., 16(4)(1996), 23-27.
  • [5] I. A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 9(2008), No. 2, 541-559.
  • [6] I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2001.
Year 2021, Volume: 4 Issue: 3, 127 - 129, 30.09.2021
https://doi.org/10.53006/rna.904880

Abstract

References

  • [1] I. Gornicki and B.E.Rhoades, A general fixed point theorem for involutions, Indian J. Pure Appl. Math. 27(1) 1996, 13-23.
  • [2] V. Berinde, Contract ¸ii generalizate ¸ si aplicat ¸ii , Editura Club Press 22, Baia Mare, 1997.
  • [3] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint no. 3(1993), 3-9.
  • [4] V. Berinde, Sequences of operators and fixed points in quasimetric spaces , Stud. Univ. ”Babe¸ s-Bolyai”, Math., 16(4)(1996), 23-27.
  • [5] I. A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 9(2008), No. 2, 541-559.
  • [6] I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2001.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Erdal Karapınar

Publication Date September 30, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

APA Karapınar, E. (2021). A fixed point theorem without a Picard operator. Results in Nonlinear Analysis, 4(3), 127-129. https://doi.org/10.53006/rna.904880
AMA Karapınar E. A fixed point theorem without a Picard operator. RNA. September 2021;4(3):127-129. doi:10.53006/rna.904880
Chicago Karapınar, Erdal. “A Fixed Point Theorem Without a Picard Operator”. Results in Nonlinear Analysis 4, no. 3 (September 2021): 127-29. https://doi.org/10.53006/rna.904880.
EndNote Karapınar E (September 1, 2021) A fixed point theorem without a Picard operator. Results in Nonlinear Analysis 4 3 127–129.
IEEE E. Karapınar, “A fixed point theorem without a Picard operator”, RNA, vol. 4, no. 3, pp. 127–129, 2021, doi: 10.53006/rna.904880.
ISNAD Karapınar, Erdal. “A Fixed Point Theorem Without a Picard Operator”. Results in Nonlinear Analysis 4/3 (September 2021), 127-129. https://doi.org/10.53006/rna.904880.
JAMA Karapınar E. A fixed point theorem without a Picard operator. RNA. 2021;4:127–129.
MLA Karapınar, Erdal. “A Fixed Point Theorem Without a Picard Operator”. Results in Nonlinear Analysis, vol. 4, no. 3, 2021, pp. 127-9, doi:10.53006/rna.904880.
Vancouver Karapınar E. A fixed point theorem without a Picard operator. RNA. 2021;4(3):127-9.