Research Article
BibTex RIS Cite

Sentinel-3 Verileri ile Aktif Yangın Tespiti ve Sentinel-2 Verileri ile Doğrulanması

Year 2022, Volume: 3 Issue: 2, 86 - 97, 18.09.2022
https://doi.org/10.48123/rsgis.1095460

Abstract

Küresel ısınmayla birlikte tüm dünyada orman yangınlarında görülmekte olan artış, son zamanlarda ülkemizde de belirgin şekilde hissedilmektedir. Bu artış, bu tür olayların en erken şekilde tespit edilmesi, izlenmesi ve kontrol altına alınmasına yönelik faaliyetlerin hızlı, organize ve doğru biçimde yapılmasını zorunluluk haline getirmiştir. Orman yangınlarının erken evrede tespitine ve takibine yönelik farklı yöntemler mevcuttur. Uydu görüntülerinin kullanımı bu yöntemlerden biridir ve alçak ya da yere eşzamanlı yörüngelerdeki uydular üzerine konulan faydalı yükler vasıtası ile yangın tespitine yönelik çok değerli veriler alınabilmektedir. Bu çalışmada aktif orman yangınlarının izlenmesi ve yangından zarar gören alanın tespit edilmesi amacıyla 2021 yılında Antalya ili Manavgat ilçesinde büyük miktarda alanın yanması ile sonuçlanan orman yangını, Sentinel-2A ve Sentinel-3A verileri kullanılarak incelenmiştir. Çalışma sonucunda orman yangınlarının izlenmesinde uyduların çok değerli bilgiler sağladığı görülmüş, yere eşzamanlı yörüngede bulunacak gelecek nesil uydularımızın, yangın tespiti ve izlenmesine yönelik veriler de sağlayacak şekilde tasarlanmasının ülkemizde meydana gelecek orman yangınlarının takibini kolaylaştıracağı değerlendirilmiştir.

References

  • Avcı, M., & Korkmaz, M. (2021). Türkiye’de orman yangını sorunu: Güncel bazı konular üzerine değerlendirmeler. Turkish Journal of Forestry, 22(3), 229-240.
  • CCI-LC. (2022, Ocak 29). Quick user guide of the Land Cover State products in GTiff and NetCDF formats. Retrieved from http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-QuickUserGuide-LC-Maps_v2-0-7.pdf
  • Cihan, A., Cerit, K., & Erener, A. (2022). Yangın alanında uydu görüntüleri ile yer yüzey sıcaklık değişimi gözlemi ve mekânsal alan tespiti. Doğal Afetler ve Çevre Dergisi, 8(1), 142-155.
  • data europa eu. (2022, Ocak 25). SEVIRI (Spinning Enhanced Visible and InfraRed Imager) Fire Radiative Power (FRP) data from the Meteosat Second Generation (MSG) Satellite. Retrieved from https://data.europa.eu/data/datasets/ seviri-spinning-enhanced-visible-and-infrared-imager-fire-radiative-power-frp-data-from-the-met1?locale=es
  • EFFIS. (2022, Ocak 16). EFFIS Annual Country Statistics for TR - Turkey. Retrieved from https://effis.jrc.ec.europa.eu/ apps/effis.statistics/effisestimates
  • ESA. (2022a, Haziran 14). Sentinel-2 MSI Revisit and Coverage. Retrieved from https://sentinels.copernicus.eu/web/ sentinel/user-guides/sentinel-2-msi/revisit-coverage
  • ESA. (2022b, Haziran 14). Sentinel-3 SLSTR Coverage. Retrieved from https://sentinels.copernicus.eu/web/ sentinel/user-guides/Sentinel-3-slstr/coverage
  • ESA. (2022c, Ocak 24). Sentinel-3 SLSTR Instrument Description. Retrieved from https://sentinel.esa.int/web/sentinel/ technical-guides/sentinel-3-slstr/instrument/description
  • ESA. (2022d, Ocak 24). Sentinel-3 SLSTR Instrument Specifications. Retrieved from https://sentinel.esa.int/web/ sentinel/technical-guides/sentinel-3-slstr/instrument/specifications
  • Escuin, S., Navarro, R., & Fernandez, P. (2008). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4), 1053-1073.
  • Esemen, K. (2011). Forest fire analysis using satellite imagery (Master tezi). İstanbul Technical University, Institute of Informatics, İstanbul.
  • Eumetsat. (2022, Ocak 25). AVHRR. Retrieved from https://www.eumetsat.int/avhrr
  • García, M. L., & Caselles, V. (1991). Mapping burns and natural reforestation using Thematic Mapper data. Geocarto International, 6(1), 31-37.
  • Giglio, L., Kendall, J., & Justice, C. (1999). Evaluation of global fire detection algorithms using simulated AVHRR infrared data. International Journal of Remote Sensing, 20(10), 1947-1985.
  • Giglio, L., Descloitres, J., Justice, C. O., & Kaufman, Y. J. (2003). An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment, 87(2-3), 273-282.
  • GTU. (2022, Mart 20). Manavgat Yangını GTÜ Tarafından Haritalandı. Retrieved from https://www.gtu.edu.tr/icerik/8/ 12549/display.aspx
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
  • NASA. (2022a, Ocak 25). Fire Information for Resource Management System (FIRMS). Retrieved from https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms
  • NASA. (2022b, Ocak 25). MODIS Moderate Resolution Imaging Spectroradiometer - About. Retrieved from https://modis.gsfc.nasa.gov/about/
  • NASA. (2022c, Ocak 25). MODIS Thermal Anomalies/Fire. Retrieved from https://modis.gsfc.nasa.gov/data/dataprod/ mod14.php
  • Nasery, S., & Kalkan, K. (2020). Burn area detection and burn severity assessment using Sentinel 2 MSI data: The case of Karabağlar district, İzmir/Turkey. Turkish Journal of Geosciences, 1(2), 72-77.
  • NOAA. (2022a, Ocak 25). GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Fire / Hot Spot Characterization. Retrieved from https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ ATBD_GOES-R_FIRE_v2.6_Oct2013.pdf
  • NOAA. (2022b, Ocak 25). Joint Polar Satellite System. Retrieved from https://www.nesdis.noaa.gov/current-satellite-missions/currently-flying/joint-polar-satellite-system
  • NOAA. (2022c, Ocak 25). Visible Infrared Imaging Radiometer Suite (VIIRS). Retrieved from https://www.nesdis.noaa.gov/current-satellite-missions/currently-flying/joint-polar-satellite-system
  • NTV. (2022, Mart 20). Orman yangınları uzaydan görüntülendi: 85 bin futbol sahası büyüklüğünde alan yandı. Retrieved from https://www.ntv.com.tr/galeri/turkiye/orman-yanginlari-uzaydan-goruntulendi-85-bin-futbol-sahasi-buyuklugunde-alan-yandi,BMqnR3bqSkSetgqIlPDTXg/IB5R2MkJjkit4-dVD_pyEw
  • Özdemir, F. B., & Demir, N. (2022). 2019 İzmir karabağlar ilçesi orman yangın alanının uydu görüntüleri ile analizi. Türk Uzaktan Algılama ve CBS Dergisi, 3(1), 20-33.
  • Parks, S. A., Dillon, G. K., & Miller, C. (2014). A new metric for quantifying burn severity: the relativized burn ratio. Remote Sensing, 6(3), 1827-1844.
  • Serco Italia SPA. (2022a, Ocak 29). Active Fire Detection with Sentinel-3 SLSTR using SNAP. Retrieved from https://rus-copernicus.eu/portal/wp-content/uploads/library/education/training/HAZA04_ActiveFire_Portugal_Tutorial_ Webinar.pdf
  • Serco Italia SPA. (2022b, Ocak 29). Burned Area Mapping with Sentinel-2 (SNAP), Portugal (version 1.2). Retrieved from https://rus-copernicus.eu/portal/wp-content/uploads/library/education/training/HAZA02_BurnedArea_ Portugal.pdf
  • Shumilo, L., Yailymov, B., & Shelestov, A. (2020, September). Active fire monitoring service for Ukraine based on satellite data. In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. Proceedings. (pp. 2913-2916). IEEE.
  • Wooster, M. J., Xu, W., & Nightingale, T. (2012). Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sensing of Environment, 120, 236-254.
  • Wooster, M. J., Xu, W., & Emsley, S. (2022, Ocak 25). Sentinel-3 Optical Products and Algorithm Definition. Active Fire: Fire Detection and Fire Radiative Power Assessment. Retrieved from https://sentinel.esa.int/documents/247904/0/ SLSTR_Level-2_Fire_ATBD.pdf/77f452ea-ee65-4f84-a9cb-cc68d1c03c6f

Detection of Active Fires with Sentinel-3 Data and Their Verification through the use of Sentinel-2 Data

Year 2022, Volume: 3 Issue: 2, 86 - 97, 18.09.2022
https://doi.org/10.48123/rsgis.1095460

Abstract

The increase in forest fires worldwide as a result of global warming has recently been felt clearly in our country as well. This increase necessitated the activities to detect, monitor and control such incidents in the earliest way, to be carried out quickly, organized and correctly. There are different methods for detecting and monitoring forest fires at an early stage. Using satellite remote sensing data is one of these methods and valuable data can be obtained for fire detection through payloads placed on different satellites in low or geosynchronous orbit. In this study, in order to monitor forest fires and determine the area damaged by the fire, the forest fire that resulted in the burning of a huge area in Manavgat district of Antalya province in 2021 was examined using Sentinel-2A and Sentinel-3A data. As a result of the study, it has been seen that satellites provide valuable information in the monitoring of forest fires and it has been pointed out that the design of our next-generation satellites in geosynchronous orbit, in a way that will provide data for fire detection and monitoring will facilitate the follow-up of forest fires that will occur in our country.

References

  • Avcı, M., & Korkmaz, M. (2021). Türkiye’de orman yangını sorunu: Güncel bazı konular üzerine değerlendirmeler. Turkish Journal of Forestry, 22(3), 229-240.
  • CCI-LC. (2022, Ocak 29). Quick user guide of the Land Cover State products in GTiff and NetCDF formats. Retrieved from http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-QuickUserGuide-LC-Maps_v2-0-7.pdf
  • Cihan, A., Cerit, K., & Erener, A. (2022). Yangın alanında uydu görüntüleri ile yer yüzey sıcaklık değişimi gözlemi ve mekânsal alan tespiti. Doğal Afetler ve Çevre Dergisi, 8(1), 142-155.
  • data europa eu. (2022, Ocak 25). SEVIRI (Spinning Enhanced Visible and InfraRed Imager) Fire Radiative Power (FRP) data from the Meteosat Second Generation (MSG) Satellite. Retrieved from https://data.europa.eu/data/datasets/ seviri-spinning-enhanced-visible-and-infrared-imager-fire-radiative-power-frp-data-from-the-met1?locale=es
  • EFFIS. (2022, Ocak 16). EFFIS Annual Country Statistics for TR - Turkey. Retrieved from https://effis.jrc.ec.europa.eu/ apps/effis.statistics/effisestimates
  • ESA. (2022a, Haziran 14). Sentinel-2 MSI Revisit and Coverage. Retrieved from https://sentinels.copernicus.eu/web/ sentinel/user-guides/sentinel-2-msi/revisit-coverage
  • ESA. (2022b, Haziran 14). Sentinel-3 SLSTR Coverage. Retrieved from https://sentinels.copernicus.eu/web/ sentinel/user-guides/Sentinel-3-slstr/coverage
  • ESA. (2022c, Ocak 24). Sentinel-3 SLSTR Instrument Description. Retrieved from https://sentinel.esa.int/web/sentinel/ technical-guides/sentinel-3-slstr/instrument/description
  • ESA. (2022d, Ocak 24). Sentinel-3 SLSTR Instrument Specifications. Retrieved from https://sentinel.esa.int/web/ sentinel/technical-guides/sentinel-3-slstr/instrument/specifications
  • Escuin, S., Navarro, R., & Fernandez, P. (2008). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4), 1053-1073.
  • Esemen, K. (2011). Forest fire analysis using satellite imagery (Master tezi). İstanbul Technical University, Institute of Informatics, İstanbul.
  • Eumetsat. (2022, Ocak 25). AVHRR. Retrieved from https://www.eumetsat.int/avhrr
  • García, M. L., & Caselles, V. (1991). Mapping burns and natural reforestation using Thematic Mapper data. Geocarto International, 6(1), 31-37.
  • Giglio, L., Kendall, J., & Justice, C. (1999). Evaluation of global fire detection algorithms using simulated AVHRR infrared data. International Journal of Remote Sensing, 20(10), 1947-1985.
  • Giglio, L., Descloitres, J., Justice, C. O., & Kaufman, Y. J. (2003). An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment, 87(2-3), 273-282.
  • GTU. (2022, Mart 20). Manavgat Yangını GTÜ Tarafından Haritalandı. Retrieved from https://www.gtu.edu.tr/icerik/8/ 12549/display.aspx
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
  • NASA. (2022a, Ocak 25). Fire Information for Resource Management System (FIRMS). Retrieved from https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms
  • NASA. (2022b, Ocak 25). MODIS Moderate Resolution Imaging Spectroradiometer - About. Retrieved from https://modis.gsfc.nasa.gov/about/
  • NASA. (2022c, Ocak 25). MODIS Thermal Anomalies/Fire. Retrieved from https://modis.gsfc.nasa.gov/data/dataprod/ mod14.php
  • Nasery, S., & Kalkan, K. (2020). Burn area detection and burn severity assessment using Sentinel 2 MSI data: The case of Karabağlar district, İzmir/Turkey. Turkish Journal of Geosciences, 1(2), 72-77.
  • NOAA. (2022a, Ocak 25). GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Fire / Hot Spot Characterization. Retrieved from https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ ATBD_GOES-R_FIRE_v2.6_Oct2013.pdf
  • NOAA. (2022b, Ocak 25). Joint Polar Satellite System. Retrieved from https://www.nesdis.noaa.gov/current-satellite-missions/currently-flying/joint-polar-satellite-system
  • NOAA. (2022c, Ocak 25). Visible Infrared Imaging Radiometer Suite (VIIRS). Retrieved from https://www.nesdis.noaa.gov/current-satellite-missions/currently-flying/joint-polar-satellite-system
  • NTV. (2022, Mart 20). Orman yangınları uzaydan görüntülendi: 85 bin futbol sahası büyüklüğünde alan yandı. Retrieved from https://www.ntv.com.tr/galeri/turkiye/orman-yanginlari-uzaydan-goruntulendi-85-bin-futbol-sahasi-buyuklugunde-alan-yandi,BMqnR3bqSkSetgqIlPDTXg/IB5R2MkJjkit4-dVD_pyEw
  • Özdemir, F. B., & Demir, N. (2022). 2019 İzmir karabağlar ilçesi orman yangın alanının uydu görüntüleri ile analizi. Türk Uzaktan Algılama ve CBS Dergisi, 3(1), 20-33.
  • Parks, S. A., Dillon, G. K., & Miller, C. (2014). A new metric for quantifying burn severity: the relativized burn ratio. Remote Sensing, 6(3), 1827-1844.
  • Serco Italia SPA. (2022a, Ocak 29). Active Fire Detection with Sentinel-3 SLSTR using SNAP. Retrieved from https://rus-copernicus.eu/portal/wp-content/uploads/library/education/training/HAZA04_ActiveFire_Portugal_Tutorial_ Webinar.pdf
  • Serco Italia SPA. (2022b, Ocak 29). Burned Area Mapping with Sentinel-2 (SNAP), Portugal (version 1.2). Retrieved from https://rus-copernicus.eu/portal/wp-content/uploads/library/education/training/HAZA02_BurnedArea_ Portugal.pdf
  • Shumilo, L., Yailymov, B., & Shelestov, A. (2020, September). Active fire monitoring service for Ukraine based on satellite data. In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. Proceedings. (pp. 2913-2916). IEEE.
  • Wooster, M. J., Xu, W., & Nightingale, T. (2012). Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sensing of Environment, 120, 236-254.
  • Wooster, M. J., Xu, W., & Emsley, S. (2022, Ocak 25). Sentinel-3 Optical Products and Algorithm Definition. Active Fire: Fire Detection and Fire Radiative Power Assessment. Retrieved from https://sentinel.esa.int/documents/247904/0/ SLSTR_Level-2_Fire_ATBD.pdf/77f452ea-ee65-4f84-a9cb-cc68d1c03c6f
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Ümit Güler 0000-0002-6376-9269

Kaan Kalkan 0000-0002-2732-5425

Publication Date September 18, 2022
Submission Date March 29, 2022
Acceptance Date September 6, 2022
Published in Issue Year 2022 Volume: 3 Issue: 2

Cite

APA Güler, Ü., & Kalkan, K. (2022). Sentinel-3 Verileri ile Aktif Yangın Tespiti ve Sentinel-2 Verileri ile Doğrulanması. Türk Uzaktan Algılama Ve CBS Dergisi, 3(2), 86-97. https://doi.org/10.48123/rsgis.1095460