Year 2024,
Volume: 2 Issue: 1, 27 - 35, 03.05.2024
Azizeh Shadidizaji
,
Kağan Tolga Cinisli
,
Mohamad Warda
,
Öznur Altunlu
,
Sahar Memarkashani
,
Farideh Ghalamfarsa
,
Abdullah Menzek
,
Dilanur Ateş
References
- Liu, C., Li, N., Dai, G., Cavdar, O., & Fang, H. (2021). A narrative review of circular RNAs as potential biomarkers and therapeutic targets for cardiovascular diseases. Annals of Translational Medicine, 9(7).
Oboh, G., Ademosun, A. O., & Ogunsuyi, O. B. (2016). Quercetin and its role in chronic diseases. Drug discovery from mother nature, 377-387.
- Batiha, G. E. S., Beshbishy, A. M., Ikram, M., Mulla, Z. S., El-Hack, M. E. A., Taha, A. E., ... & Elewa, Y. H. A. (2020). The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 9(3), 374.
- Chang, X., Zhang, T., Meng, Q., Yan, P., Wang, X., Luo, D., ... & Ji, R. (2021). Quercetin improves cardiomyocyte vulnerability to hypoxia by regulating SIRT1/TMBIM6-related mitophagy and endoplasmic reticulum stress. Oxidative Medicine and Cellular Longevity, 2021.
- Hu, Y., Gui, Z., Zhou, Y., Xia, L., Lin, K., & Xu, Y. (2019). Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radical Biology and Medicine, 145, 146-160.
Li, H., & Zhang, Q. (2023). Research Progress of Flavonoids Regulating Endothelial Function. Pharmaceuticals, 16(9), 1201.
- Aggarwal, K., Bansal, V., Mahmood, R., Kanagala, S. G., & Jain, R. (2023). Asthma and Cardiovascular Diseases: Uncovering Common Ground in Risk Factors and Pathogenesis. Cardiology in Review, 10-1097.
Zhang, W., Zheng, Y., Yan, F., Dong, M., & Ren, Y. (2023). Research progress of quercetin in cardiovascular disease. Frontiers in Cardiovascular Medicine, 10.
- Yamagata, K. (2023). Onion quercetin inhibits vascular endothelial cell dysfunction and prevents hypertension. European Food Research and Technology, 1-13.
- Yan, L., Vaghari-Tabari, M., Malakoti, F., Moein, S., Qujeq, D., Yousefi, B., & Asemi, Z. (2023). Quercetin: An effective polyphenol in alleviating diabetes and diabetic complications. Critical reviews in food science and nutrition, 63(28), 9163-9186.
- Papakyriakopoulou, P., Velidakis, N., Khattab, E., Valsami, G., Korakianitis, I., & Kadoglou, N. P. (2022). Potential pharmaceutical applications of quercetin in cardiovascular diseases. Pharmaceuticals, 15(8), 1019.
- Bartekova, M., Čarnická, S., Pancza, D., Ondrejčáková, M., Breier, A., & Ravingerová, T. (2010). Acute treatment with polyphenol quercetin improves postischemic recovery of isolated perfused rat hearts after global ischemia. Canadian journal of physiology and pharmacology, 88(4), 465-471.
- Patel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh, V., & Shin, H. S. (2018). Therapeutic potential of quercetin as a cardiovascular agent. European journal of medicinal chemistry, 155, 889-904.
- Yamagata, K., & Yamori, Y. (2020). Inhibition of endothelial dysfunction by dietary flavonoids and preventive effects against cardiovascular disease. Journal of Cardiovascular Pharmacology, 75(1), 1-9.
- Guo, B., Chou, F., Huang, L., Yin, F., Fang, J., Wang, J. B., & Jia, Z. (2022). Recent insights into oxidative metabolism of quercetin: Catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Critical Reviews in Food Science and Nutrition, 1-28.
- Wang, M. H., Li, L. Z., Sun, J. B., Wu, F. H., & Liang, J. Y. (2014). A new antioxidant flavone glycoside from Scutellaria baicalensis Georgi. Natural product research, 28(20), 1772-1776.
- Alizadeh, S. R., & Ebrahimzadeh, M. A. (2022). Quercetin derivatives: Drug design, development, and biological activities, a review. European journal of medicinal chemistry, 229, 114068.
- Khan, J., Deb, P. K., Priya, S., Medina, K. D., Devi, R., Walode, S. G., & Rudrapal, M. (2021). Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 26(13), 4021.
- UCSF Chimera--a visualization system for exploratory research and analysis. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. J Comput Chem. 2004 Oct;25(13):1605-12.
- Totrov, M., & Abagyan, R. (2008). Flexible ligand docking to multiple receptor conformations: a practical alternative. Current opinion in structural biology, 18(2), 178-184. https://doi.org/10.1016/j.sbi.2008.01.004
- Mustafa, U. S. T. A., GÜLLER, A., DEMİREL, S., KORKMAZ, G., & Zeynelabidin, K. U. R. T. (2023). New insights into tomato spotted wilt orthotospovirus (TSWV) infections in Türkiye: Molecular detection, phylogenetic analysis, and in silico docking study. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3), 13245-13245. https://doi.org/10.15835/nbha51313245
- Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Res., 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956
- PerkinElmer. (2023). ChemBioDraw Ultra 14. Retrieved from https://scistore.cambridgesoft.com/chembiodraw/, Access Date: 15.03.2024
- Protein Data Bank. (2023). PDB ID: 1ema. Retrieved from https://www.rcsb.org/structure/1ema, Access Date: 15.03.2024
- Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: computed atlas of surface topography of proteins. Nucleic acids research, 46(W1), W363-W367. https://doi.org/10.1093/nar/gky473
- AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Trott O, Olson AJ. J Comput Chem. 2010 Jan 30;31(2):455-61.
- Schrödinger, LLC. (2023). Support. Retrieved from https://pymol.org/2/support.html , Access Date: 15.03.2024
Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic acids research, 49(W1), W530-W534. https://doi.org/10.1093/nar/gkab294
- BIOVIA Discovery Studio Visualizer v21.1.0.20298 (BIOVIA, Dassault Systèmes, San Diego, CA, USA)
Niranjan, V., et al., Protocol for the development of coarse-grained structures for macromolecular simulation using GROMACS. Plos one, 2023. 18(8): p. e0288264.
- Gharaghani, S., T. Khayamian, and M. Ebrahimi, Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors. SAR and QSAR in Environmental Research, 2013. 24(9): p. 773-794.
- Sargsyan, K., C. Grauffel, and C. Lim, How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of chemical theory and computation, 2017. 13(4): p. 1518-1524.
- Elangovan, N.D., et al., Screening of potential drug for Alzheimer’s disease: A computational study with GSK-3 β inhibition through virtual screening, docking, and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 2021. 39(18): p. 7065-7079.
- Saravanan, K., G. Hunday, and P. Kumaradhas, Binding and stability of indirubin-3-monoxime in the GSK3β enzyme: A molecular dynamics simulation and binding free energy study. Journal of Biomolecular Structure and Dynamics, 2019.
- Shukla, R., N.S. Munjal, and T.R. Singh, Identification of novel small molecules against GSK3β for Alzheimer's disease using chemoinformatics approach. Journal of Molecular Graphics and Modelling, 2019. 91: p. 91-104.
- Eskandarzadeh, M., et al., Inhibition of GSK_3β by Iridoid Glycosides of Snowberry (Symphoricarpos albus) Effective in the Treatment of Alzheimer’s Disease Using Computational Drug Design Methods. Frontiers in chemistry, 2021. 9: p. 709932.
- Shadidizaji, A., Cinisli, K. T., Warda, M., Cicek, B., & Hacimuftoglu, A. (2024). Virtual insights into the quercetin-Melampsora lini-derived effector AvrM14 interaction: An In silico exploration of plant defense mechanisms. Physiological and Molecular Plant Pathology, 129, 102200.
- SHADIDIZAJI, A., ÇINAR, B., CİNİSLİ, K. T., REZAEI, M., SAĞSÖZ, M. E., OKKAY, U., ... & HACIMÜFTÜOĞLU, A. (2023). In silico study of synthetic Bromophenol Compounds against Staphylococcus aeurus's target protein (DHFR) Enzyme. Recent Trends in Pharmacology, 1(2), 72-85.
- Rad, P. M., Rahbarnia, L., Safary, A., ShadiDizaji, A., & Maani, Z. (2023). The Synthetic Antimicrobial Peptide Derived From Melittin Displays Low Toxicity and Anti-infectious Properties. Probiotics and Antimicrobial Proteins, 1-11.
- Matta, C. F., Hernández‐Trujillo, J., Tang, T. H., & Bader, R. F. (2003). Hydrogen–hydrogen bonding: a stabilizing interaction in molecules and crystals. Chemistry–A European Journal, 9(9), 1940-1951.
- Bayan, A. M., Mosawi, S. H., Fani, N., Behrad, M. S., Mehrpoor, A. J., Noori, M. Y., ... & Amirkhezi, F. (2023). Integrating molecular docking and molecular dynamics simulation studies on the affinity and interactions of piperine with β-lactamase class A enzymes. Journal of Molecular Structure, 1292, 136151.
- Rezaei, S., Sefidbakht, Y., & Uskoković, V. (2022). Comparative molecular dynamics study of the receptor-binding domains in SARS-CoV-2 and SARS-CoV and the effects of mutations on the binding affinity. Journal of Biomolecular Structure and Dynamics, 40(10), 4662-4681.
- Guillermo Gormaz, J., Quintremil, S., & Rodrigo, R. (2015). Cardiovascular disease: a target for the pharmacological effects of quercetin. Current topics in medicinal chemistry, 15(17), 1735-1742.
- Siegbahn, P. E. (2004). Hybrid DFT study of the mechanism of quercetin 2, 3-dioxygenase. Inorganic chemistry, 43(19), 5944-5953.
- Ren, G., Chen, H., Zhang, M., Yang, N., Yang, H., Xu, C., ... & Zhao, D. (2020). Pharmacokinetics, tissue distribution and excretion study of Oroxylin A, Oroxylin A 7-O-glucuronide and Oroxylin A sodium sulfonate in rats after administration of Oroxylin A. Fitoterapia, 142, 104480.
In Silico Elucidation of the Binding Mechanisms and Molecular Dynamics of Oroxylin A -2,3-Dioxygenase Interaction: An Insight into Therapeutic Potentiation of Quercetin’s Cardioprotection.
Year 2024,
Volume: 2 Issue: 1, 27 - 35, 03.05.2024
Azizeh Shadidizaji
,
Kağan Tolga Cinisli
,
Mohamad Warda
,
Öznur Altunlu
,
Sahar Memarkashani
,
Farideh Ghalamfarsa
,
Abdullah Menzek
,
Dilanur Ateş
Abstract
Elucidating the intricate interplay between enzymes and natural compounds is essential for designing therapeutic strategies. This study employs advanced computational techniques to explore the binding mechanisms between quercetin 2,3-dioxygenase (QDO) and oroxylin A, revealing specific interaction patterns and key residues crucial to the formation of the QDO-oroxylin A complex. Molecular docking simulations revealed a favorable binding affinity (docking score: -5.6 kcal/mol) between Oroxylin A and the active site cavity of QDO, which was supported by Oroxylin A's specific orientation (Pose 3). Despite an observed RMSD value of 2.776 indicating a moderate deviation between the docked pose and the reference structure, the formation of two hydrogen bonds with GLN 93 chain D underscores specific molecular interactions driving the binding process. This hydrogen bond formation suggested the presence of a stable and specific binding mode between Oroxylin A and QDO, likely influencing the functional dynamics of the enzyme, necessitating further refinement and validation of the docking model. The ensuing deliberation on the implications of Oroxylin A include its potential as a modulator of QDO activity, emphasizing the importance of molecular-level insights in comprehending enzyme-compound interactions. Oroxylin A, a quercetin 2,3-dioxygenase inhibitor, was used in combination with other agents to prolong the biological impacts of quercetin, thereby amplifying its antioxidant and anti-inflammatory effects. This strategic approach exhibits promise in augmenting cardioprotective benefits, immune system support, and protection against diverse pathological conditions. Subsequent considerations of dosage, bioavailability, and healthcare professional consultation are imperative for judicious supplementation, particularly in individuals with prevailing health conditions or medications. This ongoing in silico study is dedicated to revealing the potential synergistic interactions of Oroxylin A, potentiating the long-term effects of quercetin and advancing our understanding of these intricacies.
References
- Liu, C., Li, N., Dai, G., Cavdar, O., & Fang, H. (2021). A narrative review of circular RNAs as potential biomarkers and therapeutic targets for cardiovascular diseases. Annals of Translational Medicine, 9(7).
Oboh, G., Ademosun, A. O., & Ogunsuyi, O. B. (2016). Quercetin and its role in chronic diseases. Drug discovery from mother nature, 377-387.
- Batiha, G. E. S., Beshbishy, A. M., Ikram, M., Mulla, Z. S., El-Hack, M. E. A., Taha, A. E., ... & Elewa, Y. H. A. (2020). The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 9(3), 374.
- Chang, X., Zhang, T., Meng, Q., Yan, P., Wang, X., Luo, D., ... & Ji, R. (2021). Quercetin improves cardiomyocyte vulnerability to hypoxia by regulating SIRT1/TMBIM6-related mitophagy and endoplasmic reticulum stress. Oxidative Medicine and Cellular Longevity, 2021.
- Hu, Y., Gui, Z., Zhou, Y., Xia, L., Lin, K., & Xu, Y. (2019). Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radical Biology and Medicine, 145, 146-160.
Li, H., & Zhang, Q. (2023). Research Progress of Flavonoids Regulating Endothelial Function. Pharmaceuticals, 16(9), 1201.
- Aggarwal, K., Bansal, V., Mahmood, R., Kanagala, S. G., & Jain, R. (2023). Asthma and Cardiovascular Diseases: Uncovering Common Ground in Risk Factors and Pathogenesis. Cardiology in Review, 10-1097.
Zhang, W., Zheng, Y., Yan, F., Dong, M., & Ren, Y. (2023). Research progress of quercetin in cardiovascular disease. Frontiers in Cardiovascular Medicine, 10.
- Yamagata, K. (2023). Onion quercetin inhibits vascular endothelial cell dysfunction and prevents hypertension. European Food Research and Technology, 1-13.
- Yan, L., Vaghari-Tabari, M., Malakoti, F., Moein, S., Qujeq, D., Yousefi, B., & Asemi, Z. (2023). Quercetin: An effective polyphenol in alleviating diabetes and diabetic complications. Critical reviews in food science and nutrition, 63(28), 9163-9186.
- Papakyriakopoulou, P., Velidakis, N., Khattab, E., Valsami, G., Korakianitis, I., & Kadoglou, N. P. (2022). Potential pharmaceutical applications of quercetin in cardiovascular diseases. Pharmaceuticals, 15(8), 1019.
- Bartekova, M., Čarnická, S., Pancza, D., Ondrejčáková, M., Breier, A., & Ravingerová, T. (2010). Acute treatment with polyphenol quercetin improves postischemic recovery of isolated perfused rat hearts after global ischemia. Canadian journal of physiology and pharmacology, 88(4), 465-471.
- Patel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh, V., & Shin, H. S. (2018). Therapeutic potential of quercetin as a cardiovascular agent. European journal of medicinal chemistry, 155, 889-904.
- Yamagata, K., & Yamori, Y. (2020). Inhibition of endothelial dysfunction by dietary flavonoids and preventive effects against cardiovascular disease. Journal of Cardiovascular Pharmacology, 75(1), 1-9.
- Guo, B., Chou, F., Huang, L., Yin, F., Fang, J., Wang, J. B., & Jia, Z. (2022). Recent insights into oxidative metabolism of quercetin: Catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Critical Reviews in Food Science and Nutrition, 1-28.
- Wang, M. H., Li, L. Z., Sun, J. B., Wu, F. H., & Liang, J. Y. (2014). A new antioxidant flavone glycoside from Scutellaria baicalensis Georgi. Natural product research, 28(20), 1772-1776.
- Alizadeh, S. R., & Ebrahimzadeh, M. A. (2022). Quercetin derivatives: Drug design, development, and biological activities, a review. European journal of medicinal chemistry, 229, 114068.
- Khan, J., Deb, P. K., Priya, S., Medina, K. D., Devi, R., Walode, S. G., & Rudrapal, M. (2021). Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 26(13), 4021.
- UCSF Chimera--a visualization system for exploratory research and analysis. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. J Comput Chem. 2004 Oct;25(13):1605-12.
- Totrov, M., & Abagyan, R. (2008). Flexible ligand docking to multiple receptor conformations: a practical alternative. Current opinion in structural biology, 18(2), 178-184. https://doi.org/10.1016/j.sbi.2008.01.004
- Mustafa, U. S. T. A., GÜLLER, A., DEMİREL, S., KORKMAZ, G., & Zeynelabidin, K. U. R. T. (2023). New insights into tomato spotted wilt orthotospovirus (TSWV) infections in Türkiye: Molecular detection, phylogenetic analysis, and in silico docking study. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3), 13245-13245. https://doi.org/10.15835/nbha51313245
- Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Res., 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956
- PerkinElmer. (2023). ChemBioDraw Ultra 14. Retrieved from https://scistore.cambridgesoft.com/chembiodraw/, Access Date: 15.03.2024
- Protein Data Bank. (2023). PDB ID: 1ema. Retrieved from https://www.rcsb.org/structure/1ema, Access Date: 15.03.2024
- Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: computed atlas of surface topography of proteins. Nucleic acids research, 46(W1), W363-W367. https://doi.org/10.1093/nar/gky473
- AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Trott O, Olson AJ. J Comput Chem. 2010 Jan 30;31(2):455-61.
- Schrödinger, LLC. (2023). Support. Retrieved from https://pymol.org/2/support.html , Access Date: 15.03.2024
Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic acids research, 49(W1), W530-W534. https://doi.org/10.1093/nar/gkab294
- BIOVIA Discovery Studio Visualizer v21.1.0.20298 (BIOVIA, Dassault Systèmes, San Diego, CA, USA)
Niranjan, V., et al., Protocol for the development of coarse-grained structures for macromolecular simulation using GROMACS. Plos one, 2023. 18(8): p. e0288264.
- Gharaghani, S., T. Khayamian, and M. Ebrahimi, Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors. SAR and QSAR in Environmental Research, 2013. 24(9): p. 773-794.
- Sargsyan, K., C. Grauffel, and C. Lim, How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of chemical theory and computation, 2017. 13(4): p. 1518-1524.
- Elangovan, N.D., et al., Screening of potential drug for Alzheimer’s disease: A computational study with GSK-3 β inhibition through virtual screening, docking, and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 2021. 39(18): p. 7065-7079.
- Saravanan, K., G. Hunday, and P. Kumaradhas, Binding and stability of indirubin-3-monoxime in the GSK3β enzyme: A molecular dynamics simulation and binding free energy study. Journal of Biomolecular Structure and Dynamics, 2019.
- Shukla, R., N.S. Munjal, and T.R. Singh, Identification of novel small molecules against GSK3β for Alzheimer's disease using chemoinformatics approach. Journal of Molecular Graphics and Modelling, 2019. 91: p. 91-104.
- Eskandarzadeh, M., et al., Inhibition of GSK_3β by Iridoid Glycosides of Snowberry (Symphoricarpos albus) Effective in the Treatment of Alzheimer’s Disease Using Computational Drug Design Methods. Frontiers in chemistry, 2021. 9: p. 709932.
- Shadidizaji, A., Cinisli, K. T., Warda, M., Cicek, B., & Hacimuftoglu, A. (2024). Virtual insights into the quercetin-Melampsora lini-derived effector AvrM14 interaction: An In silico exploration of plant defense mechanisms. Physiological and Molecular Plant Pathology, 129, 102200.
- SHADIDIZAJI, A., ÇINAR, B., CİNİSLİ, K. T., REZAEI, M., SAĞSÖZ, M. E., OKKAY, U., ... & HACIMÜFTÜOĞLU, A. (2023). In silico study of synthetic Bromophenol Compounds against Staphylococcus aeurus's target protein (DHFR) Enzyme. Recent Trends in Pharmacology, 1(2), 72-85.
- Rad, P. M., Rahbarnia, L., Safary, A., ShadiDizaji, A., & Maani, Z. (2023). The Synthetic Antimicrobial Peptide Derived From Melittin Displays Low Toxicity and Anti-infectious Properties. Probiotics and Antimicrobial Proteins, 1-11.
- Matta, C. F., Hernández‐Trujillo, J., Tang, T. H., & Bader, R. F. (2003). Hydrogen–hydrogen bonding: a stabilizing interaction in molecules and crystals. Chemistry–A European Journal, 9(9), 1940-1951.
- Bayan, A. M., Mosawi, S. H., Fani, N., Behrad, M. S., Mehrpoor, A. J., Noori, M. Y., ... & Amirkhezi, F. (2023). Integrating molecular docking and molecular dynamics simulation studies on the affinity and interactions of piperine with β-lactamase class A enzymes. Journal of Molecular Structure, 1292, 136151.
- Rezaei, S., Sefidbakht, Y., & Uskoković, V. (2022). Comparative molecular dynamics study of the receptor-binding domains in SARS-CoV-2 and SARS-CoV and the effects of mutations on the binding affinity. Journal of Biomolecular Structure and Dynamics, 40(10), 4662-4681.
- Guillermo Gormaz, J., Quintremil, S., & Rodrigo, R. (2015). Cardiovascular disease: a target for the pharmacological effects of quercetin. Current topics in medicinal chemistry, 15(17), 1735-1742.
- Siegbahn, P. E. (2004). Hybrid DFT study of the mechanism of quercetin 2, 3-dioxygenase. Inorganic chemistry, 43(19), 5944-5953.
- Ren, G., Chen, H., Zhang, M., Yang, N., Yang, H., Xu, C., ... & Zhao, D. (2020). Pharmacokinetics, tissue distribution and excretion study of Oroxylin A, Oroxylin A 7-O-glucuronide and Oroxylin A sodium sulfonate in rats after administration of Oroxylin A. Fitoterapia, 142, 104480.